Evaluating Logical Generalization in Graph Neural Networks
- URL: http://arxiv.org/abs/2003.06560v1
- Date: Sat, 14 Mar 2020 05:45:55 GMT
- Title: Evaluating Logical Generalization in Graph Neural Networks
- Authors: Koustuv Sinha, Shagun Sodhani, Joelle Pineau and William L. Hamilton
- Abstract summary: We study the task of logical generalization using graph neural networks (GNNs)
Our benchmark suite, GraphLog, requires that learning algorithms perform rule induction in different synthetic logics.
We find that the ability for models to generalize and adapt is strongly determined by the diversity of the logical rules they encounter during training.
- Score: 59.70452462833374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent research has highlighted the role of relational inductive biases in
building learning agents that can generalize and reason in a compositional
manner. However, while relational learning algorithms such as graph neural
networks (GNNs) show promise, we do not understand how effectively these
approaches can adapt to new tasks. In this work, we study the task of logical
generalization using GNNs by designing a benchmark suite grounded in
first-order logic. Our benchmark suite, GraphLog, requires that learning
algorithms perform rule induction in different synthetic logics, represented as
knowledge graphs. GraphLog consists of relation prediction tasks on 57 distinct
logical domains. We use GraphLog to evaluate GNNs in three different setups:
single-task supervised learning, multi-task pretraining, and continual
learning. Unlike previous benchmarks, our approach allows us to precisely
control the logical relationship between the different tasks. We find that the
ability for models to generalize and adapt is strongly determined by the
diversity of the logical rules they encounter during training, and our results
highlight new challenges for the design of GNN models. We publicly release the
dataset and code used to generate and interact with the dataset at
https://www.cs.mcgill.ca/~ksinha4/graphlog.
Related papers
- Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - LOGIN: A Large Language Model Consulted Graph Neural Network Training Framework [30.54068909225463]
We aim to streamline the GNN design process and leverage the advantages of Large Language Models (LLMs) to improve the performance of GNNs on downstream tasks.
We formulate a new paradigm, coined "LLMs-as-Consultants," which integrates LLMs with GNNs in an interactive manner.
We empirically evaluate the effectiveness of LOGIN on node classification tasks across both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2024-05-22T18:17:20Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a complex reasoning schema over KG upon large language models (LLMs)
We augment the arbitrary first-order logical queries via binary tree decomposition to stimulate the reasoning capability of LLMs.
Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods.
arXiv Detail & Related papers (2024-05-02T18:12:08Z) - Generalization Limits of Graph Neural Networks in Identity Effects
Learning [12.302336258860116]
Graph Neural Networks (GNNs) have emerged as a powerful tool for data-driven learning on various graph domains.
We establish new generalization properties and fundamental limits of GNNs in the context of learning so-called identity effects.
Our study is motivated by the need to understand the capabilities of GNNs when performing simple cognitive tasks.
arXiv Detail & Related papers (2023-06-30T20:56:38Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
We propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds.
GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets.
Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries.
arXiv Detail & Related papers (2022-05-16T18:39:04Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Learning to Execute Programs with Instruction Pointer Attention Graph
Neural Networks [55.98291376393561]
Graph neural networks (GNNs) have emerged as a powerful tool for learning software engineering tasks.
Recurrent neural networks (RNNs) are well-suited to long sequential chains of reasoning, but they do not naturally incorporate program structure.
We introduce a novel GNN architecture, the Instruction Pointer Attention Graph Neural Networks (IPA-GNN), which improves systematic generalization on the task of learning to execute programs.
arXiv Detail & Related papers (2020-10-23T19:12:30Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.