HMDO: Markerless Multi-view Hand Manipulation Capture with Deformable
Objects
- URL: http://arxiv.org/abs/2301.07652v1
- Date: Wed, 18 Jan 2023 16:55:15 GMT
- Title: HMDO: Markerless Multi-view Hand Manipulation Capture with Deformable
Objects
- Authors: Wei Xie, Zhipeng Yu, Zimeng Zhao, Binghui Zuo, Yangang Wang
- Abstract summary: HMDO is the first markerless deformable interaction dataset recording interactive motions of the hands and deformable objects.
The proposed method can reconstruct interactive motions of hands and deformable objects with high quality.
- Score: 8.711239906965893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct the first markerless deformable interaction dataset recording
interactive motions of the hands and deformable objects, called HMDO (Hand
Manipulation with Deformable Objects). With our built multi-view capture
system, it captures the deformable interactions with multiple perspectives,
various object shapes, and diverse interactive forms. Our motivation is the
current lack of hand and deformable object interaction datasets, as 3D hand and
deformable object reconstruction is challenging. Mainly due to mutual
occlusion, the interaction area is difficult to observe, the visual features
between the hand and the object are entangled, and the reconstruction of the
interaction area deformation is difficult. To tackle this challenge, we propose
a method to annotate our captured data. Our key idea is to collaborate with
estimated hand features to guide the object global pose estimation, and then
optimize the deformation process of the object by analyzing the relationship
between the hand and the object. Through comprehensive evaluation, the proposed
method can reconstruct interactive motions of hands and deformable objects with
high quality. HMDO currently consists of 21600 frames over 12 sequences. In the
future, this dataset could boost the research of learning-based reconstruction
of deformable interaction scenes.
Related papers
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
Our work aims to reconstruct hand-object interactions from a single-view image.
We first design a novel pipeline to estimate the underlying hand pose and object shape.
With the initial reconstruction, we employ a prior-guided optimization scheme.
arXiv Detail & Related papers (2024-11-21T16:33:35Z) - Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation [52.36691633451968]
ViTaM-D is a visual-tactile framework for dynamic hand-object interaction reconstruction.
DF-Field is a distributed force-aware contact representation model.
Our results highlight the superior performance of ViTaM-D in both rigid and deformable object reconstruction.
arXiv Detail & Related papers (2024-11-14T16:29:45Z) - Text2HOI: Text-guided 3D Motion Generation for Hand-Object Interaction [8.253265795150401]
This paper introduces the first text-guided work for generating the sequence of hand-object interaction in 3D.
For contact generation, a VAE-based network takes as input a text and an object mesh, and generates the probability of contacts between the surfaces of hands and the object.
For motion generation, a Transformer-based diffusion model utilizes this 3D contact map as a strong prior for generating physically plausible hand-object motion.
arXiv Detail & Related papers (2024-03-31T04:56:30Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
holistic 3Dunderstanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation.
We design the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits.
Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks.
arXiv Detail & Related papers (2024-03-25T05:12:21Z) - Novel-view Synthesis and Pose Estimation for Hand-Object Interaction
from Sparse Views [41.50710846018882]
We propose a neural rendering and pose estimation system for hand-object interaction from sparse views.
We first learn the shape and appearance prior knowledge of hands and objects separately with the neural representation.
During the online stage, we design a rendering-based joint model fitting framework to understand the dynamic hand-object interaction.
arXiv Detail & Related papers (2023-08-22T05:17:41Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
Existing methods rely on frame-based detectors to locate interacting objects.
We propose to leverage hand-object interaction to track interactive objects.
Our proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-08-06T09:09:17Z) - Full-Body Articulated Human-Object Interaction [61.01135739641217]
CHAIRS is a large-scale motion-captured f-AHOI dataset consisting of 16.2 hours of versatile interactions.
CHAIRS provides 3D meshes of both humans and articulated objects during the entire interactive process.
By learning the geometrical relationships in HOI, we devise the very first model that leverage human pose estimation.
arXiv Detail & Related papers (2022-12-20T19:50:54Z) - Collaborative Learning for Hand and Object Reconstruction with
Attention-guided Graph Convolution [49.10497573378427]
Estimating the pose and shape of hands and objects under interaction finds numerous applications including augmented and virtual reality.
Our algorithm is optimisation to object models, and it learns the physical rules governing hand-object interaction.
Experiments using four widely-used benchmarks show that our framework achieves beyond state-of-the-art accuracy in 3D pose estimation, as well as recovers dense 3D hand and object shapes.
arXiv Detail & Related papers (2022-04-27T17:00:54Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
We propose to consider hand and object jointly in feature space and explore the reciprocity of the two branches.
We employ an auxiliary depth estimation module to augment the input RGB image with the estimated depth map.
Our approach significantly outperforms existing approaches in terms of the reconstruction accuracy of objects.
arXiv Detail & Related papers (2020-06-28T09:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.