Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation
- URL: http://arxiv.org/abs/2411.09572v1
- Date: Thu, 14 Nov 2024 16:29:45 GMT
- Title: Dynamic Reconstruction of Hand-Object Interaction with Distributed Force-aware Contact Representation
- Authors: Zhenjun Yu, Wenqiang Xu, Pengfei Xie, Yutong Li, Cewu Lu,
- Abstract summary: ViTaM-D is a visual-tactile framework for dynamic hand-object interaction reconstruction.
DF-Field is a distributed force-aware contact representation model.
Our results highlight the superior performance of ViTaM-D in both rigid and deformable object reconstruction.
- Score: 52.36691633451968
- License:
- Abstract: We present ViTaM-D, a novel visual-tactile framework for dynamic hand-object interaction reconstruction, integrating distributed tactile sensing for more accurate contact modeling. While existing methods focus primarily on visual inputs, they struggle with capturing detailed contact interactions such as object deformation. Our approach leverages distributed tactile sensors to address this limitation by introducing DF-Field. This distributed force-aware contact representation models both kinetic and potential energy in hand-object interaction. ViTaM-D first reconstructs hand-object interactions using a visual-only network, VDT-Net, and then refines contact details through a force-aware optimization (FO) process, enhancing object deformation modeling. To benchmark our approach, we introduce the HOT dataset, which features 600 sequences of hand-object interactions, including deformable objects, built in a high-precision simulation environment. Extensive experiments on both the DexYCB and HOT datasets demonstrate significant improvements in accuracy over previous state-of-the-art methods such as gSDF and HOTrack. Our results highlight the superior performance of ViTaM-D in both rigid and deformable object reconstruction, as well as the effectiveness of DF-Field in refining hand poses. This work offers a comprehensive solution to dynamic hand-object interaction reconstruction by seamlessly integrating visual and tactile data. Codes, models, and datasets will be available.
Related papers
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - NCRF: Neural Contact Radiance Fields for Free-Viewpoint Rendering of
Hand-Object Interaction [19.957593804898064]
We present a novel free-point rendering framework, Neural Contact Radiance Field ( NCRF), to reconstruct hand-object interactions from a sparse set of videos.
We jointly learn these key components where they mutually help and regularize each other with visual and geometric constraints.
Our approach outperforms the current state-of-the-art in terms of both rendering quality and pose estimation accuracy.
arXiv Detail & Related papers (2024-02-08T10:09:12Z) - Visual-Tactile Sensing for In-Hand Object Reconstruction [38.42487660352112]
We propose a visual-tactile in-hand object reconstruction framework textbfVTacO, and extend it to textbfVTacOH for hand-object reconstruction.
A simulation environment, VT-Sim, supports generating hand-object interaction for both rigid and deformable objects.
arXiv Detail & Related papers (2023-03-25T15:16:31Z) - HMDO: Markerless Multi-view Hand Manipulation Capture with Deformable
Objects [8.711239906965893]
HMDO is the first markerless deformable interaction dataset recording interactive motions of the hands and deformable objects.
The proposed method can reconstruct interactive motions of hands and deformable objects with high quality.
arXiv Detail & Related papers (2023-01-18T16:55:15Z) - Stability-driven Contact Reconstruction From Monocular Color Images [7.427212296770506]
Physical contact provides additional constraints for hand-object state reconstruction.
Existing methods optimize the hand-object contact driven by distance threshold or prior from contact-labeled datasets.
Our key idea is to reconstruct the contact pattern directly from monocular images, and then utilize the physical stability criterion in the simulation to optimize it.
arXiv Detail & Related papers (2022-05-02T12:23:06Z) - ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object
Manipulation [135.10594078615952]
We introduce ACID, an action-conditional visual dynamics model for volumetric deformable objects.
A benchmark contains over 17,000 action trajectories with six types of plush toys and 78 variants.
Our model achieves the best performance in geometry, correspondence, and dynamics predictions.
arXiv Detail & Related papers (2022-03-14T04:56:55Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
In this work, we employ a high-resolution tactile glove to perform four different interactive activities on a diversified set of objects.
We build our model on a cross-modal learning framework and generate the labels using a visual processing pipeline to supervise the tactile model.
This work takes a step on dynamics modeling in hand-object interactions from dense tactile sensing.
arXiv Detail & Related papers (2021-09-09T16:04:14Z) - Learning Intuitive Physics with Multimodal Generative Models [24.342994226226786]
This paper presents a perception framework that fuses visual and tactile feedback to make predictions about the expected motion of objects in dynamic scenes.
We use a novel See-Through-your-Skin (STS) sensor that provides high resolution multimodal sensing of contact surfaces.
We validate through simulated and real-world experiments in which the resting state of an object is predicted from given initial conditions.
arXiv Detail & Related papers (2021-01-12T12:55:53Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
We propose to consider hand and object jointly in feature space and explore the reciprocity of the two branches.
We employ an auxiliary depth estimation module to augment the input RGB image with the estimated depth map.
Our approach significantly outperforms existing approaches in terms of the reconstruction accuracy of objects.
arXiv Detail & Related papers (2020-06-28T09:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.