Topology in the space-time scaling limit of quantum dynamics
- URL: http://arxiv.org/abs/2301.07752v2
- Date: Tue, 13 Jun 2023 14:03:11 GMT
- Title: Topology in the space-time scaling limit of quantum dynamics
- Authors: Lorenzo Rossi, Jan Carl Budich, Fabrizio Dolcini
- Abstract summary: We investigate the role of topology in the space-time scaling limit of quantum quench dynamics.
We find that the presence of a locally invisible constant magnetic flux is revealed by a dynamical staircase behavior of the Berry phase.
- Score: 0.3437656066916039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the role of topology in the space-time scaling limit of
quantum quench dynamics, where both time and system size tend to infinity at a
constant ratio. There, while the standard topological characterization relying
on local unitary transformations becomes ill defined, we show how a different
dynamical notion of topology naturally arises through a dynamical winding
number encoding the linear response of the Berry phase to a magnetic flux.
Specifically, we find that the presence of a locally invisible constant
magnetic flux is revealed by a dynamical staircase behavior of the Berry phase,
whose topologically quantized plateaus characterize the space-time scaling
limit of a quenched Rice-Mele model. These jumps in the Berry phase are also
shown to be related to the interband elements of the DC current operator. We
outline possible experimental platforms for observing the predicted phenomena
in finite systems.
Related papers
- A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Emerging topological characterization in non-equilibrium states of quenched Kitaev chains [0.0]
Topological characteristics of quantum systems are determined by the closing of a gap.
The dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT)
arXiv Detail & Related papers (2023-11-14T10:26:15Z) - Dynamical singularity of the rate function for quench dynamics in
finite-size quantum systems [1.2514666672776884]
We study the realization of the dynamical singularity of the rate function for finite-size systems under the twist boundary condition.
We show that exact zeros of the Loschmidt echo can be always achieved when the postquench parameter is across the underlying equilibrium phase transition point.
arXiv Detail & Related papers (2022-11-06T14:35:57Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Dynamical detection of mean-field topological phases in an interacting
Chern insulator [11.848843951626527]
We propose a scheme based on quench dynamics to detect the mean-field topological phase diagram of an insulator.
We find two characteristic times $t_s$ and $t_c$ which capture the emergence of dynamical self-consistent particle number density.
The number of mean-field topological phase is determined by the spin polarizations of four Dirac points at the time $t_s$.
arXiv Detail & Related papers (2022-06-22T12:37:15Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Dynamical phase transitions in quantum spin models with
antiferromagnetic long-range interactions [0.0]
Anomalous cusps in the return rate are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions.
For quenches across the quantum critical point, textitregular cusps appear in the return rate and connect to the local order parameter changing sign.
arXiv Detail & Related papers (2021-06-09T18:00:01Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Signatures of topology in quantum quench dynamics and their
interrelation [0.0]
We study the conditions for the appearance of entanglement spectrum crossings, dynamical quantum phase transitions, and dynamical Chern numbers.
For non-interacting models, we show that in general there is no direct relation between these three quantities.
arXiv Detail & Related papers (2020-03-17T18:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.