Evolution of $1/f$ Flux Noise in Superconducting Qubits with Weak
Magnetic Fields
- URL: http://arxiv.org/abs/2301.07804v1
- Date: Wed, 18 Jan 2023 22:26:08 GMT
- Title: Evolution of $1/f$ Flux Noise in Superconducting Qubits with Weak
Magnetic Fields
- Authors: David A. Rower, Lamia Ateshian, Lauren H. Li, Max Hays, Dolev
Bluvstein, Leon Ding, Bharath Kannan, Aziza Almanakly, Jochen Braum\"uller,
David K. Kim, Alexander Melville, Bethany M. Niedzielski, Mollie E. Schwartz,
Jonilyn L. Yoder, Terry P. Orlando, Joel I-Jan Wang, Simon Gustavsson,
Jeffrey A. Grover, Kyle Serniak, Riccardo Comin, William D. Oliver
- Abstract summary: The origin of $1/f$ magnetic flux noise in superconducting circuits has remained an open question for several decades.
Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence.
We apply weak in-plane magnetic fields to a capacitively-shunted flux qubit and study the flux-noise-limited qubit dephasing.
- Score: 37.41181188499616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The microscopic origin of $1/f$ magnetic flux noise in superconducting
circuits has remained an open question for several decades despite extensive
experimental and theoretical investigation. Recent progress in superconducting
devices for quantum information has highlighted the need to mitigate sources of
qubit decoherence, driving a renewed interest in understanding the underlying
noise mechanism(s). Though a consensus has emerged attributing flux noise to
surface spins, their identity and interaction mechanisms remain unclear,
prompting further study. Here we apply weak in-plane magnetic fields to a
capacitively-shunted flux qubit (where the Zeeman splitting of surface spins
lies below the device temperature) and study the flux-noise-limited qubit
dephasing, revealing previously unexplored trends that may shed light on the
dynamics behind the emergent $1/f$ noise. Notably, we observe an enhancement
(suppression) of the spin-echo (Ramsey) pure dephasing time in fields up to
$B=100~\text{G}$. With direct noise spectroscopy, we further observe a
transition from a $1/f$ to approximately Lorentzian frequency dependence below
10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field.
We suggest that these trends are qualitatively consistent with an increase of
spin cluster sizes with magnetic field. These results should help to inform a
complete microscopic theory of $1/f$ flux noise in superconducting circuits.
Related papers
- Quasiparticle effects in magnetic-field-resilient 3D transmons [0.0]
We present measurements of the parity-switching time of a field-resilient 3D transmon with in-plane field up to 0.41T.
We demonstrate that the superconducting-gap asymmetry plays a crucial role in the observed behavior.
We establish that Al-AlO$_x$-Al JJs could be used in architectures for the parity-readout and manipulation of topological qubits.
arXiv Detail & Related papers (2024-03-05T22:37:21Z) - Model for 1/f Flux noise in Superconducting Aluminum Devices: Impact of
External Magnetic Fields [0.0]
Superconducting quantum interference devices (SQUIDs) and related circuits made of aluminum display $1/omega$ flux noise.
An external magnetic field in the $10-100$G range changed the noise to a single Lorentzian peaked at $omega=0$.
The model shows that application of an external magnetic field can be used to reduce the impact of flux noise in qubits.
arXiv Detail & Related papers (2023-02-23T20:26:56Z) - Flux noise in disordered spin systems [0.0]
Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause flux noise.
We propose an intermediate "second principles" method to describe general spin dissipation and flux noise in the quantum regime.
arXiv Detail & Related papers (2022-07-20T16:53:01Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Coherence of a driven electron spin qubit actively decoupled from
quasi-static noise [0.4065594766856674]
Coherence of electron spin qubits in semiconductor quantum dots suffers mostly from low-frequency noise.
We demonstrate an electron spin qubit whose coherence in the driven evolution is limited by high-frequency charge noise.
arXiv Detail & Related papers (2020-01-09T08:43:07Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.