Model for 1/f Flux noise in Superconducting Aluminum Devices: Impact of
External Magnetic Fields
- URL: http://arxiv.org/abs/2302.12316v2
- Date: Sat, 20 May 2023 03:07:45 GMT
- Title: Model for 1/f Flux noise in Superconducting Aluminum Devices: Impact of
External Magnetic Fields
- Authors: Jos\'e Alberto Nava Aquino and Rog\'erio de Sousa
- Abstract summary: Superconducting quantum interference devices (SQUIDs) and related circuits made of aluminum display $1/omega$ flux noise.
An external magnetic field in the $10-100$G range changed the noise to a single Lorentzian peaked at $omega=0$.
The model shows that application of an external magnetic field can be used to reduce the impact of flux noise in qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting quantum interference devices (SQUIDs) and related circuits
made of aluminum are known to display $1/\omega$ flux noise, where $\omega$ is
frequency. A recent experiment showed that the application of an external
magnetic field in the $10-100$~G range changed the noise to a single Lorentzian
peaked at $\omega=0$. Here it is shown that a model based on independent
impurity spin flips with coexisting cross and direct mechanisms of spin
relaxation may explain these experiments. The model shows that application of
an external magnetic field can be used to reduce the impact of flux noise in
qubits.
Related papers
- Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Improved Limits on an Exotic Spin- and Velocity-Dependent Interaction at
the Micrometer Scale with an Ensemble-NV-Diamond Magnetometer [7.684562006253786]
We search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale.
The result establishes new bounds for the coupling parameter $f_perp$ within the force range from 5 to 400 $rm mu$m.
arXiv Detail & Related papers (2023-08-04T11:21:41Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Rotational and inverse square potential effects on harmonic oscillator
confined by flux field in a space-time with screw dislocation [0.0]
We study the interplay of non-inertial effects induced by a rotating frame and confinement by the Aharonov-Bohm flux field.
In both scenarios, a significant observation is made: the quantum flux field's existence brings about a shift in the energy spectrum.
arXiv Detail & Related papers (2023-03-02T06:51:13Z) - Evolution of $1/f$ Flux Noise in Superconducting Qubits with Weak
Magnetic Fields [37.41181188499616]
The origin of $1/f$ magnetic flux noise in superconducting circuits has remained an open question for several decades.
Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence.
We apply weak in-plane magnetic fields to a capacitively-shunted flux qubit and study the flux-noise-limited qubit dephasing.
arXiv Detail & Related papers (2023-01-18T22:26:08Z) - Flux noise in disordered spin systems [0.0]
Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause flux noise.
We propose an intermediate "second principles" method to describe general spin dissipation and flux noise in the quantum regime.
arXiv Detail & Related papers (2022-07-20T16:53:01Z) - Tunnelling of a composite particle in presence of a magnetic field [0.0]
We present a model of composite particle tunnelling through a rectangular potential barrier in presence of magnetic field.
Some qualitative features of tunnelling with no magnetic interaction are retained, but some new ones are also observed.
For some values of relevant parameters we also observe significant increase of tunnelling probability for low energies in the single particle case.
arXiv Detail & Related papers (2022-06-14T08:57:42Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.