論文の概要: Spatio-Temporal Context Modeling for Road Obstacle Detection
- arxiv url: http://arxiv.org/abs/2301.07921v1
- Date: Thu, 19 Jan 2023 07:06:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-20 15:35:29.539817
- Title: Spatio-Temporal Context Modeling for Road Obstacle Detection
- Title(参考訳): 道路障害物検出のための時空間モデル
- Authors: Xiuen Wu, Tao Wang, Lingyu Liang, Zuoyong Li, Fum Yew Ching
- Abstract要約: トレーニングデータのレイアウトを用いて、駆動シーンのデータ駆動コンテキスト時間モデルを構築する。
障害物は最先端のオブジェクト検出アルゴリズムによって検出され、結果は生成されたシーンと組み合わせられる。
- 参考スコア(独自算出の注目度): 12.464149169670735
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road obstacle detection is an important problem for vehicle driving safety.
In this paper, we aim to obtain robust road obstacle detection based on
spatio-temporal context modeling. Firstly, a data-driven spatial context model
of the driving scene is constructed with the layouts of the training data.
Then, obstacles in the input image are detected via the state-of-the-art object
detection algorithms, and the results are combined with the generated scene
layout. In addition, to further improve the performance and robustness,
temporal information in the image sequence is taken into consideration, and the
optical flow is obtained in the vicinity of the detected objects to track the
obstacles across neighboring frames. Qualitative and quantitative experiments
were conducted on the Small Obstacle Detection (SOD) dataset and the Lost and
Found dataset. The results indicate that our method with spatio-temporal
context modeling is superior to existing methods for road obstacle detection.
- Abstract(参考訳): 道路障害物検出は車両の運転安全にとって重要な問題である。
本稿では,時空間モデルに基づくロバストな道路障害物検出を実現することを目的とする。
まず、トレーニングデータのレイアウトに基づいて、運転シーンのデータ駆動空間コンテキストモデルを構築する。
そして、入力画像中の障害物を最先端のオブジェクト検出アルゴリズムを介して検出し、生成されたシーンレイアウトと組み合わせる。
さらに、性能とロバスト性をさらに向上するため、画像シーケンス中の時間情報を考慮し、検出された物体の近傍に光学的流れを求め、隣接するフレームを横切る障害物を追跡する。
小型障害物検出(SOD)データセットとLost and Foundデータセットの定性的および定量的実験を行った。
その結果,時空間モデルを用いた提案手法は既存の道路障害物検出手法よりも優れていることがわかった。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
道路障害物検出技術は,車間距離が大きくなるにつれて障害物の見かけの規模が減少するという事実を無視することを示す。
画像位置毎に仮想物体の見かけの大きさを符号化したスケールマップを演算することでこれを活用できる。
次に、この視点マップを利用して、遠近法に対応する大きさの道路合成物体に注入することで、トレーニングデータを生成する。
論文 参考訳(メタデータ) (2022-10-04T17:48:42Z) - Road Rutting Detection using Deep Learning on Images [0.0]
道路ラッティングは、道路の早期かつコストのかかる保守コストの早期の故障を引き起こす深刻な道路難題である。
本稿では,949個の画像からなる新しい道路ラッティングデータセットを提案し,オブジェクトレベルのアノテーションとピクセルレベルのアノテーションを提供する。
オブジェクト検出モデルとセマンティックセグメンテーションモデルは,提案したデータセット上での道路変動を検出するためにデプロイされた。
論文 参考訳(メタデータ) (2022-09-28T16:53:05Z) - Real-Time Accident Detection in Traffic Surveillance Using Deep Learning [0.8808993671472349]
本稿では,交通監視用交差点における事故検出のための新しい効率的な枠組みを提案する。
提案手法は,最先端のYOLOv4法に基づく効率的かつ高精度な物体検出を含む,3つの階層的なステップから構成される。
提案フレームワークのロバスト性は,様々な照明条件でYouTubeから収集した映像シーケンスを用いて評価する。
論文 参考訳(メタデータ) (2022-08-12T19:07:20Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
本稿では,ニューラルネットワークによってパラメータ化される暗黙的値関数として,オブジェクト点群と相対的タスク軌跡の両方を符号化する新しいオブジェクト表現であるNeural Motion Fieldsを提案する。
このオブジェクト中心表現は、SE(3)空間上の連続分布をモデル化し、サンプリングベースのMPCを利用して、この値関数を最適化することで、反応的に把握することができる。
論文 参考訳(メタデータ) (2022-06-29T18:47:05Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
マルチオブジェクトトラッキング(MOT)は、自動運転車の安全な配備の前提条件である。
観測対象間の依存関係をエンコードするトラック埋め込みの計算に注目するMOTに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-18T03:40:25Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - Anomalous Motion Detection on Highway Using Deep Learning [14.617786106427834]
本稿では,新しい異常検出データセットであるハイウェイ交通異常(HTA)データセットを提案する。
我々は、最先端のディープラーニング異常検出モデルを評価し、これらの手法に新しいバリエーションを提案する。
論文 参考訳(メタデータ) (2020-06-15T05:40:11Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z) - Unsupervised Pixel-level Road Defect Detection via Adversarial
Image-to-Frequency Transform [8.644679871804872]
本稿では,AIFT(Adversarial Image-to-Frequency Transform)を用いた道路欠陥検出のための教師なし手法を提案する。
AIFTは、欠陥検出モデルの導出において、教師なしの方法と敵対的な学習を採用するため、道路舗装欠陥に対するアノテーションは不要である。
論文 参考訳(メタデータ) (2020-01-30T04:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。