論文の概要: Asynchronously Trained Distributed Topographic Maps
- arxiv url: http://arxiv.org/abs/2301.08379v1
- Date: Fri, 20 Jan 2023 01:15:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-23 13:56:01.072702
- Title: Asynchronously Trained Distributed Topographic Maps
- Title(参考訳): 非同期学習型分散地形図
- Authors: Abbas Siddiqui and Dionysios Georgiadis
- Abstract要約: 分散トレーニングによって特徴マップを生成するために,N$の自律ユニットを用いたアルゴリズムを提案する。
単位の自律性は、分散探索とカスケード駆動の重み更新スキームを組み合わせることで、時間と空間のスパース相互作用によって達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topographic feature maps are low dimensional representations of data, that
preserve spatial dependencies. Current methods of training such maps (e.g. self
organizing maps - SOM, generative topographic maps) require centralized control
and synchronous execution, which restricts scalability. We present an algorithm
that uses $N$ autonomous units to generate a feature map by distributed
asynchronous training. Unit autonomy is achieved by sparse interaction in time
\& space through the combination of a distributed heuristic search, and a
cascade-driven weight updating scheme governed by two rules: a unit i) adapts
when it receives either a sample, or the weight vector of a neighbor, and ii)
broadcasts its weight vector to its neighbors after adapting for a predefined
number of times. Thus, a vector update can trigger an avalanche of adaptation.
We map avalanching to a statistical mechanics model, which allows us to
parametrize the statistical properties of cascading. Using MNIST, we
empirically investigate the effect of the heuristic search accuracy and the
cascade parameters on map quality. We also provide empirical evidence that
algorithm complexity scales at most linearly with system size $N$. The proposed
approach is found to perform comparably with similar methods in classification
tasks across multiple datasets.
- Abstract(参考訳): 地形特徴マップはデータの低次元表現であり、空間依存を保存する。
このようなマップを訓練する現在の方法(例えば、自己組織化マップ - SOM、生成地形マップ)は、拡張性を制限する集中制御と同期実行を必要とする。
分散非同期トレーニングによって特徴マップを生成するために,N$の自律ユニットを用いたアルゴリズムを提案する。
単位の自律性は、分散ヒューリスティック探索とカスケード駆動の重み更新スキームの組み合わせによって、時間 \& 空間におけるスパースな相互作用によって達成される。
一 サンプル又は隣人の重量ベクトルを受信したとき、適応し、
二 予め定められた回数に適応した後、その重量ベクトルを隣人に送信すること。
これにより、ベクトル更新は適応の雪崩を引き起こすことができる。
雪崩を統計力学モデルにマッピングすることで,カスケードの統計特性をパラメータ化することができる。
MNISTを用いて,ヒューリスティック探索精度とカスケードパラメータが地図品質に及ぼす影響を実証的に検討した。
また、アルゴリズムの複雑さがシステムサイズ$n$で最大に線形にスケールすることを示す実証的な証拠を提供する。
提案手法は,複数のデータセットにまたがる分類タスクにおいて,同様の手法を両立させる。
関連論文リスト
- A Paradigm Shift in Mouza Map Vectorization: A Human-Machine Collaboration Approach [2.315458677488431]
現在の手動のデジタル化手法は時間と労力がかかる。
本研究では,デジタル化プロセスの効率化と,時間と人的資源の節約を目的とした半自動化手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T12:47:36Z) - DTCLMapper: Dual Temporal Consistent Learning for Vectorized HD Map Construction [20.6143278960295]
本稿では,時間的インスタンス整合性と時間的マップ整合性学習に焦点を当てた。
DTCLMapperは、インスタンスの埋め込みとジオメトリマップを組み合わせた、双方向ストリームの時間一貫性学習モジュールである。
良く認識されたベンチマーク実験から,提案したDTCLMapperはベクトル化されたマッピングタスクにおいて最先端のパフォーマンスを達成することが示唆された。
論文 参考訳(メタデータ) (2024-05-09T02:58:55Z) - EgoVM: Achieving Precise Ego-Localization using Lightweight Vectorized
Maps [9.450650025266379]
本稿では,従来の最先端手法に匹敵するローカライズ精度を実現するエンド・ツー・エンドのローカライズネットワークであるEgoVMを提案する。
我々は、学習可能なセマンティック埋め込みを用いて、マップ要素のセマンティックタイプを符号化し、セマンティックセマンティックセグメンテーションでそれらを監督する。
本研究では,頑健なヒストグラムに基づくポーズ解法を用いて,候補ポーズを徹底的に探索することで最適なポーズを推定する。
論文 参考訳(メタデータ) (2023-07-18T06:07:25Z) - Automated classification of pre-defined movement patterns: A comparison
between GNSS and UWB technology [55.41644538483948]
リアルタイム位置情報システム(RTLS)は、人間の動きパターンからデータを収集することができる。
本研究の目的は、小さな領域における人間の動きパターンを分類する自動化された枠組みを設計し、評価することである。
論文 参考訳(メタデータ) (2023-03-10T14:46:42Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
我々は、点雲上に定義された学習関数に関する地図を同期させることにより、複数の非剛体形状を登録する新しい方法であるSyNoRiMを提案する。
提案手法は,登録精度において最先端の性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-11-25T02:37:59Z) - Transformer-based Map Matching Model with Limited Ground-Truth Data
using Transfer-Learning Approach [6.510061176722248]
多くのトラジェクトリベースのアプリケーションでは、生のGPSトラジェクトリをデジタルマップの道路網にマッピングする必要がある。
本稿では,データの観点から地図マッチングの課題を考察し,深層学習に基づく地図マッチングモデルを提案する。
合成軌道データを生成し,トランスフォーマーモデルを事前学習し,有限個の接地トラスデータでモデルを微調整する。
論文 参考訳(メタデータ) (2021-08-01T11:51:11Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - ICON: Learning Regular Maps Through Inverse Consistency [19.27928605302463]
画像登録の計算など空間変換の正則性をもたらすものについて検討する。
深いネットワークと逆整合損失とランダム化されたオフグリッド収量は、ほぼ微分同相の空間変換でよく振る舞う。
このアプローチの単純さにもかかわらず、実験は合成データと実データの両方において、明示的な正規化子と競合的な登録性能を慎重に調整せずに正規写像を得ることができるという説得力のある証拠を示している。
論文 参考訳(メタデータ) (2021-05-10T15:52:12Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
密な相関体積表現は冗長であり、その中の要素のほんの一部で正確なフロー推定が達成できることを示した。
実験により,高い精度を維持しつつ計算コストとメモリ使用量を大幅に削減できることを示した。
論文 参考訳(メタデータ) (2021-04-05T21:44:00Z) - Learning Lane Graph Representations for Motion Forecasting [92.88572392790623]
生の地図データからレーングラフを構築し,地図構造を保存する。
我々は,アクター・トゥ・レーン,レーン・トゥ・レーン,レーン・トゥ・アクター,アクター・トゥ・アクターの4種類のインタラクションからなる融合ネットワークを利用する。
提案手法は,大規模Argoverse運動予測ベンチマークにおいて,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-27T17:59:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。