論文の概要: DIFAI: Diverse Facial Inpainting using StyleGAN Inversion
- arxiv url: http://arxiv.org/abs/2301.08443v1
- Date: Fri, 20 Jan 2023 06:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-23 13:38:30.048047
- Title: DIFAI: Diverse Facial Inpainting using StyleGAN Inversion
- Title(参考訳): DIFAI:StyleGANインバージョンを用いた横顔インペイント
- Authors: Dongsik Yoon, Jeong-gi Kwak, Yuanming Li, David Han and Hanseok Ko
- Abstract要約: 本稿では,StyleGANの埋め込み空間を利用した多彩な顔塗布のための新しい枠組みを提案する。
本フレームワークでは,pSpエンコーダとSeFaアルゴリズムを用いて,StyleGAN埋め込みのセマンティックコンポーネントを特定し,提案したSPARNデコーダに供給する。
- 参考スコア(独自算出の注目度): 18.400846952014188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image inpainting is an old problem in computer vision that restores occluded
regions and completes damaged images. In the case of facial image inpainting,
most of the methods generate only one result for each masked image, even though
there are other reasonable possibilities. To prevent any potential biases and
unnatural constraints stemming from generating only one image, we propose a
novel framework for diverse facial inpainting exploiting the embedding space of
StyleGAN. Our framework employs pSp encoder and SeFa algorithm to identify
semantic components of the StyleGAN embeddings and feed them into our proposed
SPARN decoder that adopts region normalization for plausible inpainting. We
demonstrate that our proposed method outperforms several state-of-the-art
methods.
- Abstract(参考訳): 画像の塗装はコンピュータビジョンの古い問題であり、隠蔽領域を復元し、損傷した画像を完成させる。
顔画像の着色の場合、他の合理的な可能性はあるが、ほとんどの方法はマスク画像ごとに1つの結果だけを生成する。
一つの画像のみを生成することによって生じる潜在的なバイアスや不自然な制約を防止するために,StyleGANの埋め込み空間を利用した多彩な顔塗布のための新しい枠組みを提案する。
本フレームワークでは,pSpエンコーダとSeFaアルゴリズムを用いて,StyleGAN埋め込みのセマンティックコンポーネントを同定し,その領域正規化を適用したSPARNデコーダに供給する。
提案手法がいくつかの最先端手法に勝ることを実証する。
関連論文リスト
- Sketch-guided Image Inpainting with Partial Discrete Diffusion Process [5.005162730122933]
スケッチ誘導インペイントのための新しい部分離散拡散法(PDDP)を提案する。
PDDPは画像のマスキング領域を破損させ、手描きスケッチで条件付けられたこれらのマスキング領域を再構築する。
提案するトランスモジュールは,2つの入力を受信する。マスク領域を含む画像はインペイントされ,クエリスケッチは逆拡散過程をモデル化する。
論文 参考訳(メタデータ) (2024-04-18T07:07:38Z) - Panoramic Image Inpainting With Gated Convolution And Contextual
Reconstruction Loss [19.659176149635417]
フェースジェネレータ,キューブジェネレータ,サイドブランチ,および2つの識別器からなるパノラマ画像インペイントフレームワークを提案する。
提案手法は,PSNRおよびSSIMの観点から,SUN360ストリートビューデータセット上の最先端(SOTA)手法と比較する。
論文 参考訳(メタデータ) (2024-02-05T11:58:08Z) - Stroke-based Neural Painting and Stylization with Dynamically Predicted
Painting Region [66.75826549444909]
ストロークベースのレンダリングは、ストロークのセットで画像を再現することを目的としている。
本研究では,現在のキャンバスに基づいて絵画領域を予測する合成ニューラルネットワークを提案する。
我々は、新しい微分可能な距離変換損失を伴って、ストロークベースのスタイル転送に拡張する。
論文 参考訳(メタデータ) (2023-09-07T06:27:39Z) - PaintSeg: Training-free Segmentation via Painting [50.17936803209125]
PaintSegは、トレーニングなしでオブジェクトをセグメンテーションするための新しい教師なしのメソッドである。
前者は前景をマスキングして背景を埋め、後者は前景の欠落部分を回復しながら背景をマスキングする。
実験の結果、PaintSegは、粗いマスクプロンプト、ボックスプロンプト、ポイントプロンプトセグメンテーションタスクにおいて、既存のアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-30T20:43:42Z) - Semantics-Guided Object Removal for Facial Images: with Broad
Applicability and Robust Style Preservation [29.162655333387452]
顔画像における物体の除去と画像の塗布は、顔画像を妨げる物体を特に標的にし、除去し、適切に再構成された顔画像に置き換えるタスクである。
U-netと変調ジェネレータを利用する2つの異なるアプローチは、それぞれに固有の利点があるが、それぞれの手法の固有の欠点にもかかわらず、このタスクに対して広く支持されている。
本稿では,SGIN(Semantics-Guided Inpainting Network)を提案する。
論文 参考訳(メタデータ) (2022-09-29T00:09:12Z) - RePaint: Inpainting using Denoising Diffusion Probabilistic Models [161.74792336127345]
Free-form Inpaintingは任意のバイナリマスクで指定された領域のイメージに新しいコンテンツを追加するタスクである。
RePaint: A Denoising Probabilistic Model (DDPM) を用いた塗装手法を提案する。
本手法は,標準的なマスクと極端マスクを用いて,顔と汎用画像の塗装の両面で検証する。
論文 参考訳(メタデータ) (2022-01-24T18:40:15Z) - In&Out : Diverse Image Outpainting via GAN Inversion [89.84841983778672]
image outpaintingは、利用可能なコンテンツを超えて、入力画像の意味的に一貫した拡張を求める。
本研究では、生成的対向ネットワークの反転の観点から問題を定式化する。
私達の発電機はイメージの彼らの共同潜入コードそして個々の位置で調節されるマイクロ パッチをレンダリングします。
論文 参考訳(メタデータ) (2021-04-01T17:59:10Z) - Iterative Facial Image Inpainting using Cyclic Reverse Generator [0.913755431537592]
Cyclic Reverse Generator (CRG)アーキテクチャはエンコーダジェネレータモデルを提供する。
提案モデルを用いて実写画像を生成するには,数回の反復しか十分でないことを実証的に観察した。
本手法では,様々なマスクタイプを用いてスケッチベースのインペインティングを適用でき,多種多様な結果が得られる。
論文 参考訳(メタデータ) (2021-01-18T12:19:58Z) - Free-Form Image Inpainting via Contrastive Attention Network [64.05544199212831]
画像の塗装作業では、複雑なパターンを形成する画像のどこにでも、どんな形でもマスクが現れる。
エンコーダはこの複雑な状況下でこのような強力な表現を捕捉することは困難である。
本稿では,ロバスト性と一般化性を改善するための自己教師型シームズ推論ネットワークを提案する。
論文 参考訳(メタデータ) (2020-10-29T14:46:05Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
本研究は, 大規模自然画像に基づいて学習したGAN(Generative Adversarial Network)により, 得られた画像の有効利用方法を示す。
深層生成前駆体(DGP)は、色、パッチ、解像度、様々な劣化した画像の欠落したセマンティクスを復元するための説得力のある結果を提供する。
論文 参考訳(メタデータ) (2020-03-30T17:45:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。