Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning
- URL: http://arxiv.org/abs/2301.08491v3
- Date: Wed, 30 Aug 2023 14:43:46 GMT
- Title: Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning
- Authors: Elizaveta Tennant, Stephen Hailes, Mirco Musolesi
- Abstract summary: A bottom-up learning approach may be more appropriate for studying and developing ethical behavior in AI agents.
We present a systematic analysis of the choices made by intrinsically-motivated RL agents whose rewards are based on moral theories.
We analyze the impact of different types of morality on the emergence of cooperation, defection or exploitation.
- Score: 4.2050490361120465
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Practical uses of Artificial Intelligence (AI) in the real world have
demonstrated the importance of embedding moral choices into intelligent agents.
They have also highlighted that defining top-down ethical constraints on AI
according to any one type of morality is extremely challenging and can pose
risks. A bottom-up learning approach may be more appropriate for studying and
developing ethical behavior in AI agents. In particular, we believe that an
interesting and insightful starting point is the analysis of emergent behavior
of Reinforcement Learning (RL) agents that act according to a predefined set of
moral rewards in social dilemmas.
In this work, we present a systematic analysis of the choices made by
intrinsically-motivated RL agents whose rewards are based on moral theories. We
aim to design reward structures that are simplified yet representative of a set
of key ethical systems. Therefore, we first define moral reward functions that
distinguish between consequence- and norm-based agents, between morality based
on societal norms or internal virtues, and between single- and mixed-virtue
(e.g., multi-objective) methodologies. Then, we evaluate our approach by
modeling repeated dyadic interactions between learning moral agents in three
iterated social dilemma games (Prisoner's Dilemma, Volunteer's Dilemma and Stag
Hunt). We analyze the impact of different types of morality on the emergence of
cooperation, defection or exploitation, and the corresponding social outcomes.
Finally, we discuss the implications of these findings for the development of
moral agents in artificial and mixed human-AI societies.
Related papers
- Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents [3.7414804164475983]
We study the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting.
We observe several types of non-trivial interactions between pro-social and anti-social agents.
We find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
arXiv Detail & Related papers (2024-03-07T04:12:24Z) - Learning Machine Morality through Experience and Interaction [3.7414804164475983]
Increasing interest in ensuring safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents.
We argue that more hybrid solutions are needed to create adaptable and robust, yet more controllable and interpretable agents.
arXiv Detail & Related papers (2023-12-04T11:46:34Z) - If our aim is to build morality into an artificial agent, how might we
begin to go about doing so? [0.0]
We discuss the different aspects that should be considered when building moral agents, including the most relevant moral paradigms and challenges.
We propose solutions including a hybrid approach to design and a hierarchical approach to combining moral paradigms.
arXiv Detail & Related papers (2023-10-12T12:56:12Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - From computational ethics to morality: how decision-making algorithms
can help us understand the emergence of moral principles, the existence of an
optimal behaviour and our ability to discover it [0.0]
This paper adds to the efforts of evolutionary ethics to naturalize morality by providing insights derived from a computational ethics view.
We propose a stylized model of human decision-making, which is based on Reinforcement Learning.
arXiv Detail & Related papers (2023-07-20T14:39:08Z) - When to Make Exceptions: Exploring Language Models as Accounts of Human
Moral Judgment [96.77970239683475]
AI systems need to be able to understand, interpret and predict human moral judgments and decisions.
A central challenge for AI safety is capturing the flexibility of the human moral mind.
We present a novel challenge set consisting of rule-breaking question answering.
arXiv Detail & Related papers (2022-10-04T09:04:27Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life
Anecdotes [72.64975113835018]
Motivated by descriptive ethics, we investigate a novel, data-driven approach to machine ethics.
We introduce Scruples, the first large-scale dataset with 625,000 ethical judgments over 32,000 real-life anecdotes.
Our dataset presents a major challenge to state-of-the-art neural language models, leaving significant room for improvement.
arXiv Detail & Related papers (2020-08-20T17:34:15Z) - Aligning AI With Shared Human Values [85.2824609130584]
We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality.
We find that current language models have a promising but incomplete ability to predict basic human ethical judgements.
Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
arXiv Detail & Related papers (2020-08-05T17:59:16Z) - Reinforcement Learning Under Moral Uncertainty [13.761051314923634]
An ambitious goal for machine learning is to create agents that behave ethically.
While ethical agents could be trained by rewarding correct behavior under a specific moral theory, there remains widespread disagreement about the nature of morality.
This paper proposes two training methods that realize different points among competing desiderata, and trains agents in simple environments to act under moral uncertainty.
arXiv Detail & Related papers (2020-06-08T16:40:12Z) - On the Morality of Artificial Intelligence [154.69452301122175]
We propose conceptual and practical principles and guidelines for Machine Learning research and deployment.
We insist on concrete actions that can be taken by practitioners to pursue a more ethical and moral practice of ML aimed at using AI for social good.
arXiv Detail & Related papers (2019-12-26T23:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.