Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents
- URL: http://arxiv.org/abs/2403.04202v6
- Date: Mon, 21 Oct 2024 13:47:44 GMT
- Title: Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents
- Authors: Elizaveta Tennant, Stephen Hailes, Mirco Musolesi,
- Abstract summary: We study the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting.
We observe several types of non-trivial interactions between pro-social and anti-social agents.
We find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
- Score: 3.7414804164475983
- License:
- Abstract: Growing concerns about safety and alignment of AI systems highlight the importance of embedding moral capabilities in artificial agents: a promising solution is the use of learning from experience, i.e., Reinforcement Learning. In multi-agent (social) environments, complex population-level phenomena may emerge from interactions between individual learning agents. Many of the existing studies rely on simulated social dilemma environments to study the interactions of independent learning agents; however, they tend to ignore the moral heterogeneity that is likely to be present in societies of agents in practice. For example, at different points in time a single learning agent may face opponents who are consequentialist (i.e., focused on maximizing outcomes over time), norm-based (i.e., conforming to specific norms), or virtue-based (i.e., considering a combination of different virtues). The extent to which agents' co-development may be impacted by such moral heterogeneity in populations is not well understood. In this paper, we present a study of the learning dynamics of morally heterogeneous populations interacting in a social dilemma setting. Using an Iterated Prisoner's Dilemma environment with a partner selection mechanism, we investigate the extent to which the prevalence of diverse moral agents in populations affects individual agents' learning behaviors and emergent population-level outcomes. We observe several types of non-trivial interactions between pro-social and anti-social agents, and find that certain types of moral agents are able to steer selfish agents towards more cooperative behavior.
Related papers
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning.
We present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning.
We derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
arXiv Detail & Related papers (2024-10-24T10:48:42Z) - I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy [13.68625980741047]
We study interaction patterns of Large Language Model (LLM)-based agents in a context characterized by strict social hierarchy.
We study two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent.
arXiv Detail & Related papers (2024-10-09T17:45:47Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
We propose a novel gradient-based state representation for multi-agent reinforcement learning.
We employ denoising score matching to learn the social gradient fields (SocialGFs) from offline samples.
In practice, we integrate SocialGFs into the widely used multi-agent reinforcement learning algorithms, e.g., MAPPO.
arXiv Detail & Related papers (2024-05-03T04:12:19Z) - Responsible Emergent Multi-Agent Behavior [2.9370710299422607]
State of the art in Responsible AI has ignored one crucial point: human problems are multi-agent problems.
From driving in traffic to negotiating economic policy, human problem-solving involves interaction and the interplay of the actions and motives of multiple individuals.
This dissertation develops the study of responsible emergent multi-agent behavior.
arXiv Detail & Related papers (2023-11-02T21:37:32Z) - Understanding the World to Solve Social Dilemmas Using Multi-Agent
Reinforcement Learning [0.7161783472741748]
We study the behavior of self-interested rational agents that learn world models in a multi-agent reinforcement learning setting.
Our simulation results show that groups of agents endowed with world models outperform all the other tested ones when dealing with scenarios where social dilemmas can arise.
arXiv Detail & Related papers (2023-05-19T00:31:26Z) - Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning [4.2050490361120465]
A bottom-up learning approach may be more appropriate for studying and developing ethical behavior in AI agents.
We present a systematic analysis of the choices made by intrinsically-motivated RL agents whose rewards are based on moral theories.
We analyze the impact of different types of morality on the emergence of cooperation, defection or exploitation.
arXiv Detail & Related papers (2023-01-20T09:36:42Z) - Aligning to Social Norms and Values in Interactive Narratives [89.82264844526333]
We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games.
We introduce the GALAD agent that uses the social commonsense knowledge present in specially trained language models to contextually restrict its action space to only those actions that are aligned with socially beneficial values.
arXiv Detail & Related papers (2022-05-04T09:54:33Z) - Improved cooperation by balancing exploration and exploitation in
intertemporal social dilemma tasks [2.541277269153809]
We propose a new learning strategy for achieving coordination by incorporating a learning rate that can balance exploration and exploitation.
We show that agents that use the simple strategy improve a relatively collective return in a decision task called the intertemporal social dilemma.
We also explore the effects of the diversity of learning rates on the population of reinforcement learning agents and show that agents trained in heterogeneous populations develop particularly coordinated policies.
arXiv Detail & Related papers (2021-10-19T08:40:56Z) - Emergent Social Learning via Multi-agent Reinforcement Learning [91.57176641192771]
Social learning is a key component of human and animal intelligence.
This paper investigates whether independent reinforcement learning agents can learn to use social learning to improve their performance.
arXiv Detail & Related papers (2020-10-01T17:54:14Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.