Hybrid Open-set Segmentation with Synthetic Negative Data
- URL: http://arxiv.org/abs/2301.08555v3
- Date: Wed, 24 Apr 2024 10:50:24 GMT
- Title: Hybrid Open-set Segmentation with Synthetic Negative Data
- Authors: Matej Grcić, Siniša Šegvić,
- Abstract summary: Open-set segmentation can be conceived by complementing closed-set classification with anomaly detection.
We propose a novel anomaly score that fuses generative and discriminative cues.
Experiments reveal strong open-set performance in spite of negligible computational overhead.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Open-set segmentation can be conceived by complementing closed-set classification with anomaly detection. Many of the existing dense anomaly detectors operate through generative modelling of regular data or by discriminating with respect to negative data. These two approaches optimize different objectives and therefore exhibit different failure modes. Consequently, we propose a novel anomaly score that fuses generative and discriminative cues. Our score can be implemented by upgrading any closed-set segmentation model with dense estimates of dataset posterior and unnormalized data likelihood. The resulting dense hybrid open-set models require negative training images that can be sampled from an auxiliary negative dataset, from a jointly trained generative model, or from a mixture of both sources. We evaluate our contributions on benchmarks for dense anomaly detection and open-set segmentation. The experiments reveal strong open-set performance in spite of negligible computational overhead.
Related papers
- Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Active anomaly detection based on deep one-class classification [9.904380236739398]
We tackle two essential problems of active learning for Deep SVDD: query strategy and semi-supervised learning method.
First, rather than solely identifying anomalies, our query strategy selects uncertain samples according to an adaptive boundary.
Second, we apply noise contrastive estimation in training a one-class classification model to incorporate both labeled normal and abnormal data effectively.
arXiv Detail & Related papers (2023-09-18T03:56:45Z) - DenseHybrid: Hybrid Anomaly Detection for Dense Open-set Recognition [1.278093617645299]
Anomaly detection can be conceived either through generative modelling of regular training data or by discriminating with respect to negative training data.
This paper presents a novel hybrid anomaly score which allows dense open-set recognition on large natural images.
Experiments evaluate our contributions on standard dense anomaly detection benchmarks as well as in terms of open-mIoU - a novel metric for dense open-set performance.
arXiv Detail & Related papers (2022-07-06T11:48:50Z) - Latent Outlier Exposure for Anomaly Detection with Contaminated Data [31.446666264334528]
Anomaly detection aims at identifying data points that show systematic deviations from the majority of data in an unlabeled dataset.
We propose a strategy for training an anomaly detector in the presence of unlabeled anomalies that is compatible with a broad class of models.
arXiv Detail & Related papers (2022-02-16T14:21:28Z) - Dense Out-of-Distribution Detection by Robust Learning on Synthetic
Negative Data [1.7474352892977458]
We show how to detect out-of-distribution anomalies in road-driving scenes and remote sensing imagery.
We leverage a jointly trained normalizing flow due to coverage-oriented learning objective and the capability to generate samples at different resolutions.
The resulting models set the new state of the art on benchmarks for out-of-distribution detection in road-driving scenes and remote sensing imagery.
arXiv Detail & Related papers (2021-12-23T20:35:10Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
Correlation Clustering is an important clustering problem with many applications.
We study the reconstruction version of this problem in which one is seeking to reconstruct a latent clustering corrupted by random noise and adversarial modifications.
arXiv Detail & Related papers (2021-08-10T14:46:17Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
We propose a method that can automatically detect and ignore dataset-specific patterns, which we call dataset biases.
Our method trains a lower capacity model in an ensemble with a higher capacity model.
We show improvement in all settings, including a 10 point gain on the visual question answering dataset.
arXiv Detail & Related papers (2020-11-07T22:20:03Z) - Categorical anomaly detection in heterogeneous data using minimum
description length clustering [3.871148938060281]
We propose a meta-algorithm for enhancing any MDL-based anomaly detection model to deal with heterogeneous data.
Our experimental results show that using a discrete mixture model provides competitive performance relative to two previous anomaly detection algorithms.
arXiv Detail & Related papers (2020-06-14T14:48:37Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.