A Dataset for Semantic Segmentation in the Presence of Unknowns
- URL: http://arxiv.org/abs/2503.22309v1
- Date: Fri, 28 Mar 2025 10:31:01 GMT
- Title: A Dataset for Semantic Segmentation in the Presence of Unknowns
- Authors: Zakaria Laskar, Tomas Vojir, Matej Grcic, Iaroslav Melekhov, Shankar Gangisettye, Juho Kannala, Jiri Matas, Giorgos Tolias, C. V. Jawahar,
- Abstract summary: Existing datasets allow evaluation of only knowns or unknowns - but not both.<n>We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.<n>The dataset is twice larger than existing anomaly segmentation datasets.
- Score: 49.795683850385956
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Before deployment in the real-world deep neural networks require thorough evaluation of how they handle both knowns, inputs represented in the training data, and unknowns (anomalies). This is especially important for scene understanding tasks with safety critical applications, such as in autonomous driving. Existing datasets allow evaluation of only knowns or unknowns - but not both, which is required to establish "in the wild" suitability of deep neural network models. To bridge this gap, we propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments. The dataset is twice larger than existing anomaly segmentation datasets, and provides a training, validation and test set for controlled in-domain evaluation. The test set consists of a static and temporal part, with the latter comprised of videos. The dataset provides annotations for both closed-set (knowns) and anomalies, enabling closed-set and open-set evaluation. The dataset covers diverse conditions, such as domain and cross-sensor shift, illumination variation and allows ablation of anomaly detection methods with respect to these variations. Evaluation results of current state-of-the-art methods confirm the need for improvements especially in domain-generalization, small and large object segmentation.
Related papers
- PATH: A Discrete-sequence Dataset for Evaluating Online Unsupervised Anomaly Detection Approaches for Multivariate Time Series [0.01874930567916036]
Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of high-quality datasets.
We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools.
Our dataset represents a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature.
arXiv Detail & Related papers (2024-11-21T09:03:12Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - An Iterative Method for Unsupervised Robust Anomaly Detection Under Data
Contamination [24.74938110451834]
Most deep anomaly detection models are based on learning normality from datasets.
In practice, the normality assumption is often violated due to the nature of real data distributions.
We propose a learning framework to reduce this gap and achieve better normality representation.
arXiv Detail & Related papers (2023-09-18T02:36:19Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Learning Confident Classifiers in the Presence of Label Noise [5.551384206194696]
This paper proposes a probabilistic model for noisy observations that allows us to build a confident classification and segmentation models.<n>Our experiments show that our algorithm outperforms state-of-the-art solutions for the considered classification and segmentation problems.
arXiv Detail & Related papers (2023-01-02T04:27:25Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDAR-based localization and mapping is one of the core components in many modern robotic systems.
This work proposes a neural network-based estimation approach for detecting (non-)localizability during robot operation.
arXiv Detail & Related papers (2022-03-11T01:12:00Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
Deep neural networks (DNNs) are usually trained on a closed set of semantic classes.
They are ill-equipped to handle previously-unseen objects.
detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving.
arXiv Detail & Related papers (2021-04-30T07:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.