論文の概要: The stochastic digital human is now enrolling for in silico imaging
trials -- Methods and tools for generating digital cohorts
- arxiv url: http://arxiv.org/abs/2301.08719v1
- Date: Fri, 20 Jan 2023 18:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-23 12:43:44.554798
- Title: The stochastic digital human is now enrolling for in silico imaging
trials -- Methods and tools for generating digital cohorts
- Title(参考訳): 確率的デジタル人間は現在、シリコイメージングのトライアルに登録されている -- デジタルコホートを生成する方法とツール
- Authors: A Badano, M Lago, E Sizikova, JG Delfino, S Guan, MA Anastasio and B
Sahiner
- Abstract要約: サイリコ・イメージング・トライアル(英: silico imaging trial)は、医療機器の性能を確認するための計算研究である。
新しい技術を評価するためのサイリコ試験の利点は、かなりの資源と時間の節約である。
サイリコ試験を行うには、人間のデジタル表現が必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized clinical trials, while often viewed as the highest evidentiary bar
by which to judge the quality of a medical intervention, are far from perfect.
In silico imaging trials are computational studies that seek to ascertain the
performance of a medical device by collecting this information entirely via
computer simulations. The benefits of in silico trials for evaluating new
technology include significant resource and time savings, minimization of
subject risk, the ability to study devices that are not achievable in the
physical world, allow for the rapid and effective investigation of new
technologies and ensure representation from all relevant subgroups. To conduct
in silico trials, digital representations of humans are needed. We review the
latest developments in methods and tools for obtaining digital humans for in
silico imaging studies. First, we introduce terminology and a classification of
digital human models. Second, we survey available methodologies for generating
digital humans with healthy and diseased status and examine briefly the role of
augmentation methods. Finally, we discuss the trade-offs of four approaches for
sampling digital cohorts and the associated potential for study bias with
selecting specific patient distributions.
- Abstract(参考訳): ランダム化された臨床試験は、しばしば医療介入の質を判断する最高の立証法と見なされるが、完璧には程遠い。
サイリコイメージングの臨床試験では、この情報をコンピュータシミュレーションによって完全に収集し、医療機器の性能を確認することを目的とした計算研究が行なわれている。
新たな技術を評価するためのin silicoトライアルの利点には、重要なリソースと時間の節約、対象リスクの最小化、物理的世界で実現不可能なデバイスの研究能力、新技術の迅速かつ効果的な調査、関連するすべてのサブグループからの表現の確保が含まれる。
シリコの試験を行うには、人間のデジタル表現が必要である。
シリコンイメージング研究におけるデジタル人間獲得手法とツールの開発状況について概説する。
まず,デジタル・ヒューマン・モデルの用語と分類について述べる。
第2に,健常者および病弱者におけるデジタル人間生成の方法を調査し,拡張法の役割を簡潔に検討した。
最後に、デジタルコホートをサンプリングする4つのアプローチのトレードオフと、特定の患者分布を選択する際の学習バイアスの関連可能性について論じる。
関連論文リスト
- Patient-centered data science: an integrative framework for evaluating and predicting clinical outcomes in the digital health era [0.0]
本研究では,デジタルヘルス時代の患者中心型データサイエンスのための新たな統合的枠組みを提案する。
従来の臨床データと患者の報告した結果、健康の社会的決定要因、および多次元データを組み合わせて総合的なデジタル患者表現を作成する多次元モデルを開発した。
論文 参考訳(メタデータ) (2024-07-31T02:36:17Z) - Artificial Intelligence-based Decision Support Systems for Precision and Digital Health [0.49109372384514843]
我々は、AIによって提供される機会、具体的には強化学習から現在のヘルスケアのトレンドまでについて論じる。
我々は適応的な介入の分野に焦点を当てる。
この記事は匿名レビューを受けており、"Frontiers of Statistics and Data Science"の巻の書籍章として意図されている。
論文 参考訳(メタデータ) (2024-07-22T21:39:34Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - A No-Reference Quality Assessment Method for Digital Human Head [56.17852258306602]
我々は、デジタルヒューマン品質評価(DHQA)を扱うトランスフォーマーに基づく新しいノリフレクション(NR)手法を開発した。
具体的には、デジタル人間の前方2次元投影を入力として描画し、特徴抽出に視覚変換器(ViT)を用いる。
次に,歪み型を共同分類し,デジタル人間の知覚品質レベルを予測するマルチタスクモジュールを設計する。
論文 参考訳(メタデータ) (2023-10-25T16:01:05Z) - Respiratory Disease Classification and Biometric Analysis Using Biosignals from Digital Stethoscopes [3.2458203725405976]
本研究は, 自動呼吸器疾患分類とバイオメトリックス解析にデジタル聴診器技術を活用した新しいアプローチを提案する。
各種呼吸状態の分類に機械学習モデルを訓練する。
本研究は,2値分類の精度(健康と疾患のバランス精度89%)と多値分類の精度(72%)を実現している。
論文 参考訳(メタデータ) (2023-09-12T23:54:00Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - SyntheX: Scaling Up Learning-based X-ray Image Analysis Through In
Silico Experiments [12.019996672009375]
人間のモデルからリアルなシミュレートされた画像を作成することは、大規模なIn situデータ収集の代替となることを示す。
人体モデルからの学習データの合成は、容易にスケールできるので、我々がSyntheXと呼ぶX線画像解析のためのモデル転送パラダイムが、実際のデータ学習モデルよりも優れていることが分かりました。
論文 参考訳(メタデータ) (2022-06-13T13:08:41Z) - Computer-Assisted Analysis of Biomedical Images [1.0116577992023341]
本論文は, バイオメディカル画像解析のための新しい, 先進的なコンピュータ支援手法を提案することを目的とする。
これらの研究の最終的な目標は、臨床および生物学的に有用な知見を得て、鑑別診断と治療を導くことである。
論文 参考訳(メタデータ) (2021-06-04T21:59:48Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。