論文の概要: Decentralized Multi-agent Filtering
- arxiv url: http://arxiv.org/abs/2301.08864v1
- Date: Sat, 21 Jan 2023 02:41:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 15:57:10.541449
- Title: Decentralized Multi-agent Filtering
- Title(参考訳): 分散マルチエージェントフィルタリング
- Authors: Dom Huh, Prasant Mohapatra
- Abstract要約: 本稿では、離散状態空間におけるマルチエージェントローカライゼーションアプリケーションに対する分散通信の導入に伴う考察について述べる。
我々は、欲求的信念共有のステップを付加することにより、離散状態推定の基本的な確率的ツールであるベイズフィルタのオリジナル定式化を拡張した。
- 参考スコア(独自算出の注目度): 12.02857497237958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the considerations that comes along with adopting
decentralized communication for multi-agent localization applications in
discrete state spaces. In this framework, we extend the original formulation of
the Bayes filter, a foundational probabilistic tool for discrete state
estimation, by appending a step of greedy belief sharing as a method to
propagate information and improve local estimates' posteriors. We apply our
work in a model-based multi-agent grid-world setting, where each agent
maintains a belief distribution for every agents' state. Our results affirm the
utility of our proposed extensions for decentralized collaborative tasks. The
code base for this work is available in the following repo
- Abstract(参考訳): 本稿では、離散状態空間におけるマルチエージェントローカライゼーションアプリケーションに対する分散通信の導入に伴う考察について述べる。
本研究では,情報伝達の手法として欲求共有のステップを付加することにより,離散状態推定のための基礎的確率的ツールであるベイズフィルタのオリジナルの定式化を拡大する。
我々は,各エージェントが各エージェントの状態に対する信念分布を保持するモデルに基づくマルチエージェントグリッドの世界設定に適用する。
本研究は,分散協調作業における提案する拡張の有用性を裏付けるものである。
この作業のコードベースは、以下のリポジトリで利用可能である。
関連論文リスト
- Networked Communication for Mean-Field Games with Function Approximation and Empirical Mean-Field Estimation [59.01527054553122]
分散エージェントは、経験的システムの単一かつ非エポゾディックな実行から平均フィールドゲームにおける平衡を学ぶことができる。
既存の設定に関数近似を導入し,Munchausen Online Mirror Descent 方式で描画する。
また, エージェントが局所的な周辺地域に基づいて, グローバルな経験分布を推定できる新しいアルゴリズムも提供する。
論文 参考訳(メタデータ) (2024-08-21T13:32:46Z) - Distributed Optimization via Kernelized Multi-armed Bandits [6.04275169308491]
分散最適化問題を異種報酬設定によるマルチエージェントカーネル化されたマルチアームバンディット問題としてモデル化する。
我々は,カーネルの一般的なクラスに対して,サブ線形なリフレッシュバウンドを実現するために,完全に分散化されたアルゴリズムであるマルチエージェントIGP-UCB(MA-IGP-UCB)を提案する。
また,Multi-agent Delayed IGP-UCB (MAD-IGP-UCB)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-07T21:57:48Z) - Scalable Multi-agent Covering Option Discovery based on Kronecker Graphs [49.71319907864573]
本稿では,分解が容易なマルチエージェントスキル発見法を提案する。
我々のキーとなる考え方は、合同状態空間をクロネッカーグラフとして近似することであり、そのフィドラーベクトルを直接見積もることができる。
ラプラシアンスペクトルを直接計算することは、無限大の状態空間を持つタスクには難易度が高いことを考慮し、さらに本手法の深層学習拡張を提案する。
論文 参考訳(メタデータ) (2023-07-21T14:53:12Z) - Policy Evaluation in Decentralized POMDPs with Belief Sharing [39.550233049869036]
エージェントが直接環境状態を観察しないような協調的政策評価タスクについて検討する。
本稿では,コミュニケーションネットワーク上での個別更新と局所的インタラクションに依存する,完全に分散化された信念形成戦略を提案する。
論文 参考訳(メタデータ) (2023-02-08T15:54:15Z) - Learning Multi-agent Skills for Tabular Reinforcement Learning using
Factor Graphs [41.17714498464354]
エージェント間の協調的な探索行動により,マルチエージェントの選択肢を直接計算できることが示唆された。
提案アルゴリズムは,マルチエージェントオプションの同定に成功し,シングルエージェントオプションや非オプションを用いることで,従来よりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-01-20T15:33:08Z) - Multi-Agent MDP Homomorphic Networks [100.74260120972863]
協調型マルチエージェントシステムでは、エージェントの異なる構成とそれらの局所的な観察の間に複雑な対称性が生じる。
単エージェント強化学習における既存の対称性の研究は、完全に集中した環境にのみ一般化できる。
本稿では,ローカル情報のみを用いた分散実行が可能なネットワークのクラスであるマルチエージェントMDPホモモルフィックネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-09T07:46:25Z) - Distributed Q-Learning with State Tracking for Multi-agent Networked
Control [61.63442612938345]
本稿では,LQR(Linear Quadratic Regulator)のマルチエージェントネットワークにおける分散Q-ラーニングについて検討する。
エージェントに最適なコントローラを設計するための状態追跡(ST)ベースのQ-ラーニングアルゴリズムを考案する。
論文 参考訳(メタデータ) (2020-12-22T22:03:49Z) - Multi-Agent Trust Region Policy Optimization [34.91180300856614]
TRPOのポリシー更新は,マルチエージェントケースに対する分散コンセンサス最適化問題に変換可能であることを示す。
マルチエージェントTRPO(MATRPO)と呼ばれる分散MARLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-15T17:49:47Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
我々は,MAML や Dif-MAML と呼ばれる協調型マルチエージェントメタ学習アルゴリズムを提案する。
提案手法により, エージェントの集合が線形速度で合意に達し, 集約MAMLの定常点に収束できることを示す。
シミュレーションの結果は従来の非協調的な環境と比較して理論的な結果と優れた性能を示している。
論文 参考訳(メタデータ) (2020-10-06T16:51:09Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。