論文の概要: Condition monitoring and anomaly detection in cyber-physical systems
- arxiv url: http://arxiv.org/abs/2301.09030v1
- Date: Sun, 22 Jan 2023 00:58:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 15:14:30.904121
- Title: Condition monitoring and anomaly detection in cyber-physical systems
- Title(参考訳): サイバー物理システムにおける状態監視と異常検出
- Authors: William Marfo, Deepak K. Tosh, Shirley V. Moore
- Abstract要約: 本稿では,サイバー物理システムにおけるロバストで費用対効果の高い異常検出のための最近の機械学習手法の比較分析を行う。
監督された症例では,98%の精度でほぼ完全である。
対照的に、教師なし症例のベストケースの精度は63%であった。
- 参考スコア(独自算出の注目度): 0.483420384410068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modern industrial environment is equipping myriads of smart manufacturing
machines where the state of each device can be monitored continuously. Such
monitoring can help identify possible future failures and develop a
cost-effective maintenance plan. However, it is a daunting task to perform
early detection with low false positives and negatives from the huge volume of
collected data. This requires developing a holistic machine learning framework
to address the issues in condition monitoring of high-priority components and
develop efficient techniques to detect anomalies that can detect and possibly
localize the faulty components. This paper presents a comparative analysis of
recent machine learning approaches for robust, cost-effective anomaly detection
in cyber-physical systems. While detection has been extensively studied, very
few researchers have analyzed the localization of the anomalies. We show that
supervised learning outperforms unsupervised algorithms. For supervised cases,
we achieve near-perfect accuracy of 98 percent (specifically for tree-based
algorithms). In contrast, the best-case accuracy in the unsupervised cases was
63 percent :the area under the receiver operating characteristic curve (AUC)
exhibits similar outcomes as an additional metric.
- Abstract(参考訳): 現代の工業環境は、各デバイスの状態を継続的に監視できるスマートマニュファクチャリングマシンを多数備えている。
このようなモニタリングは、将来の障害の可能性を識別し、コスト効率の良いメンテナンス計画を開発するのに役立つ。
しかし、収集した膨大な量のデータから、偽陽性や陰性が低い早期検出を行うのは大変な作業である。
これには、高優先度コンポーネントの条件監視の問題に対処するための総合的な機械学習フレームワークの開発と、障害コンポーネントの検出とローカライズが可能な異常検出のための効率的なテクニックの開発が必要となる。
本稿では,サイバー物理システムにおけるロバストでコスト効率のよい異常検出のための機械学習手法の比較分析を行う。
検出は広く研究されているが、異常の局在を分析する研究者はほとんどいない。
教師なし学習は教師なしアルゴリズムよりも優れていることを示す。
教師付きケースでは、ほぼ完全な98%の精度(特に木に基づくアルゴリズム)を達成する。
一方, 教師なし症例のベストケース精度は63%であり, 受信機操作特性曲線(AUC)下において, 同様の結果が得られた。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Detection Latencies of Anomaly Detectors: An Overlooked Perspective ? [1.8492669447784602]
本稿では,攻撃とエラーの時間的遅延を測定することの関連性について論じる。
本稿では,検知器の評価手法を提案する。
論文 参考訳(メタデータ) (2024-02-14T10:52:39Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
本研究では,センサデータに小さな対向摂動のみを加えることで,最先端の異常検出手法の性能を著しく劣化させることを実証した。
いくつかのパブリックデータセットとプライベートデータセットに対して、予測エラー、異常、分類スコアなど、さまざまなスコアを使用する。
敵攻撃に対する異常検出システムの脆弱性を初めて実証した。
論文 参考訳(メタデータ) (2022-08-24T01:55:50Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z) - Canonical Polyadic Decomposition and Deep Learning for Machine Fault
Detection [0.0]
マシンからあらゆる種類の障害を学ぶのに十分なデータを集めることは不可能である。
健康状態のみのデータを用いてトレーニングされた新しいアルゴリズムを開発し、教師なしの異常検出を行った。
これらのアルゴリズムの開発における重要な問題は、異常検出性能に影響を与える信号のノイズである。
論文 参考訳(メタデータ) (2021-07-20T14:06:50Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。