Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets
- URL: http://arxiv.org/abs/2301.09056v1
- Date: Sun, 22 Jan 2023 04:53:38 GMT
- Title: Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets
- Authors: Trupti Mahendrakar and Andrew Ekblad and Nathan Fischer and Ryan T.
White and Markus Wilde and Brian Kish and Isaac Silver
- Abstract summary: This paper discusses how the combination of cameras and machine learning algorithms can achieve the relative navigation task.
The performance of two deep learning-based object detection algorithms, Faster Region-based Convolutional Neural Networks (R-CNN) and You Only Look Once (YOLOv5) is tested.
The paper discusses the path to implementing the feature recognition algorithms and towards integrating them into the spacecraft Guidance Navigation and Control system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous navigation and path-planning around non-cooperative space objects
is an enabling technology for on-orbit servicing and space debris removal
systems. The navigation task includes the determination of target object
motion, the identification of target object features suitable for grasping, and
the identification of collision hazards and other keep-out zones. Given this
knowledge, chaser spacecraft can be guided towards capture locations without
damaging the target object or without unduly the operations of a servicing
target by covering up solar arrays or communication antennas. One way to
autonomously achieve target identification, characterization and feature
recognition is by use of artificial intelligence algorithms. This paper
discusses how the combination of cameras and machine learning algorithms can
achieve the relative navigation task. The performance of two deep
learning-based object detection algorithms, Faster Region-based Convolutional
Neural Networks (R-CNN) and You Only Look Once (YOLOv5), is tested using
experimental data obtained in formation flight simulations in the ORION Lab at
Florida Institute of Technology. The simulation scenarios vary the yaw motion
of the target object, the chaser approach trajectory, and the lighting
conditions in order to test the algorithms in a wide range of realistic and
performance limiting situations. The data analyzed include the mean average
precision metrics in order to compare the performance of the object detectors.
The paper discusses the path to implementing the feature recognition algorithms
and towards integrating them into the spacecraft Guidance Navigation and
Control system.
Related papers
- Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft.
Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets.
This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision.
arXiv Detail & Related papers (2024-08-22T02:48:13Z) - Ensuring UAV Safety: A Vision-only and Real-time Framework for Collision Avoidance Through Object Detection, Tracking, and Distance Estimation [16.671696289301625]
This paper presents a deep-learning framework that utilizes optical sensors for the detection, tracking, and distance estimation of non-cooperative aerial vehicles.
In this work, we propose a method for estimating the distance information of a detected aerial object in real time using only the input of a monocular camera.
arXiv Detail & Related papers (2024-05-10T18:06:41Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
Currently, humans drive robots to meet scientific objectives, but depending on the robot's location, the exchange of information and driving commands may cause undue delays in mission fulfillment.
An autonomous robot encoded with a scientific objective and an exploration strategy incurs no communication delays and can fulfill missions more quickly.
Active learning algorithms offer this capability of intelligent exploration, but the underlying model structure varies the performance of the active learning algorithm in accurately forming an understanding of the environment.
arXiv Detail & Related papers (2023-09-28T02:45:14Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - SpaceYOLO: A Human-Inspired Model for Real-time, On-board Spacecraft
Feature Detection [0.0]
Real-time, automated spacecraft feature recognition is needed to pinpoint the locations of collision hazards.
New algorithm SpaceYOLO fuses a state-of-the-art object detector YOLOv5 with a separate neural network based on human-inspired decision processes.
Performance in autonomous spacecraft detection of SpaceYOLO is compared to ordinary YOLOv5 in hardware-in-the-loop experiments.
arXiv Detail & Related papers (2023-02-02T02:11:39Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
Two popular voxel-based 3D object detection methods are studied in this paper.
Our experiments show that these methods mostly fail to detect distant small objects due to the sparsity of the input point clouds at large distances.
Our findings suggest that a considerable part of the computations of existing methods is focused on locations of the scene that do not contribute with successful detection.
arXiv Detail & Related papers (2021-05-21T12:40:59Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.