ddml: Double/debiased machine learning in Stata
- URL: http://arxiv.org/abs/2301.09397v3
- Date: Sat, 6 Jan 2024 13:17:57 GMT
- Title: ddml: Double/debiased machine learning in Stata
- Authors: Achim Ahrens, Christian B. Hansen, Mark E. Schaffer, Thomas Wiemann
- Abstract summary: We introduce the package ddml for Double/Debiased Machine Learning (DDML) in Stata.
ddml is compatible with many existing supervised machine learning programs in Stata.
- Score: 2.8880000014100506
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce the package ddml for Double/Debiased Machine Learning (DDML) in
Stata. Estimators of causal parameters for five different econometric models
are supported, allowing for flexible estimation of causal effects of endogenous
variables in settings with unknown functional forms and/or many exogenous
variables. ddml is compatible with many existing supervised machine learning
programs in Stata. We recommend using DDML in combination with stacking
estimation which combines multiple machine learners into a final predictor. We
provide Monte Carlo evidence to support our recommendation.
Related papers
- Hyperparameter Tuning for Causal Inference with Double Machine Learning:
A Simulation Study [4.526082390949313]
We empirically assess the relationship between the predictive performance of machine learning methods and the resulting causal estimation.
We conduct an extensive simulation study using data from the 2019 Atlantic Causal Inference Conference Data Challenge.
arXiv Detail & Related papers (2024-02-07T09:01:51Z) - Model Averaging and Double Machine Learning [2.6436521007616114]
We show that DDML with stacking is more robust to partially unknown functional forms than common alternative approaches.
We provide Stata and R software implementing our proposals.
arXiv Detail & Related papers (2024-01-03T09:38:13Z) - Adaptive debiased machine learning using data-driven model selection
techniques [0.5735035463793007]
Adaptive Debiased Machine Learning (ADML) is a nonbiased framework that combines data-driven model selection and debiased machine learning techniques.
ADML avoids the bias introduced by model misspecification and remains free from the restrictions of parametric and semi models.
We provide a broad class of ADML estimators for estimating the average treatment effect in adaptive partially linear regression models.
arXiv Detail & Related papers (2023-07-24T06:16:17Z) - Matched Machine Learning: A Generalized Framework for Treatment Effect
Inference With Learned Metrics [87.05961347040237]
We introduce Matched Machine Learning, a framework that combines the flexibility of machine learning black boxes with the interpretability of matching.
Our framework uses machine learning to learn an optimal metric for matching units and estimating outcomes.
We show empirically that instances of Matched Machine Learning perform on par with black-box machine learning methods and better than existing matching methods for similar problems.
arXiv Detail & Related papers (2023-04-03T19:32:30Z) - The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm [154.47590401735323]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2022-09-30T08:02:18Z) - LIFE: Learning Individual Features for Multivariate Time Series
Prediction with Missing Values [71.52335136040664]
We propose a Learning Individual Features (LIFE) framework, which provides a new paradigm for MTS prediction with missing values.
LIFE generates reliable features for prediction by using the correlated dimensions as auxiliary information and suppressing the interference from uncorrelated dimensions with missing values.
Experiments on three real-world data sets verify the superiority of LIFE to existing state-of-the-art models.
arXiv Detail & Related papers (2021-09-30T04:53:24Z) - Learning Log-Determinant Divergences for Positive Definite Matrices [47.61701711840848]
In this paper, we propose to learn similarity measures in a data-driven manner.
We capitalize on the alphabeta-log-det divergence, which is a meta-divergence parametrized by scalars alpha and beta.
Our key idea is to cast these parameters in a continuum and learn them from data.
arXiv Detail & Related papers (2021-04-13T19:09:43Z) - DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R [4.830430752756141]
R package DoubleML implements the double/debiased machine learning framework.
It provides functionalities to estimate parameters in causal models based on machine learning methods.
arXiv Detail & Related papers (2021-03-17T12:42:41Z) - The Paradigm Discovery Problem [121.79963594279893]
We formalize the paradigm discovery problem and develop metrics for judging systems.
We report empirical results on five diverse languages.
Our code and data are available for public use.
arXiv Detail & Related papers (2020-05-04T16:38:54Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.