論文の概要: Explaining the effects of non-convergent sampling in the training of
Energy-Based Models
- arxiv url: http://arxiv.org/abs/2301.09428v1
- Date: Mon, 23 Jan 2023 13:30:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:34:49.149292
- Title: Explaining the effects of non-convergent sampling in the training of
Energy-Based Models
- Title(参考訳): エネルギーモデル学習における非収束サンプリングの効果について
- Authors: Elisabeth Agoritsas, Giovanni Catania, Aur\'elien Decelle, Beatriz
Seoane
- Abstract要約: 我々は,非収束マルコフ連鎖を用いたエネルギーモデルトレーニングの効果を定量化する。
本研究では,非持続的短距離走で訓練したESMを用いて勾配を推定することにより,経験的統計の集合を完璧に再現できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we quantify the impact of using non-convergent Markov chains
to train Energy-Based models (EBMs). In particular, we show analytically that
EBMs trained with non-persistent short runs to estimate the gradient can
perfectly reproduce a set of empirical statistics of the data, not at the level
of the equilibrium measure, but through a precise dynamical process. Our
results provide a first-principles explanation for the observations of recent
works proposing the strategy of using short runs starting from random initial
conditions as an efficient way to generate high-quality samples in EBMs, and
lay the groundwork for using EBMs as diffusion models. After explaining this
effect in generic EBMs, we analyze two solvable models in which the effect of
the non-convergent sampling in the trained parameters can be described in
detail. Finally, we test these predictions numerically on the Boltzmann
machine.
- Abstract(参考訳): 本稿では,非収束マルコフ連鎖を用いたエネルギーベースモデル(EBM)の訓練の効果を定量化する。
特に,非永続的ショートランで訓練したESMを用いて勾配を推定することにより,平衡測定のレベルでではなく,正確な動的プロセスによって,データの経験的統計を完璧に再現できることを示す。
本研究は,ESMの高品質試料を効率よく生成し,ESMを拡散モデルとして用いるための基礎となる基礎となる手法として,ランダム初期条件からのショートランの利用戦略を提案する。
この効果を汎用ebmsで説明した後、訓練パラメータにおける非収束サンプリングの効果を詳細に記述できる2つの可解モデルの解析を行った。
最後にボルツマンマシン上でこれらの予測を数値的に検証する。
関連論文リスト
- Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
反復Denoising Energy Matching (iDEM)
iDEMは,拡散型サンプリング装置から高モデル密度のサンプリング領域を (I) 交換し, (II) それらのサンプルをマッチング目的に使用した。
提案手法は,全測定値の最先端性能を達成し,2~5倍の速さでトレーニングを行う。
論文 参考訳(メタデータ) (2024-02-09T01:11:23Z) - STANLEY: Stochastic Gradient Anisotropic Langevin Dynamics for Learning
Energy-Based Models [41.031470884141775]
エネルギーベースモデル(EBM)のためのエンドツーエンド学習アルゴリズムを提案する。
本稿では、異方性段差と勾配インフォームド共分散行列に基づく新しい高次元サンプリング法を提案する。
提案手法,すなわちSTANLEYは,新しいMCMC法を用いてエネルギーベースモデルを学習するための最適化アルゴリズムである。
論文 参考訳(メタデータ) (2023-10-19T11:55:16Z) - Learning Energy-Based Prior Model with Diffusion-Amortized MCMC [89.95629196907082]
非収束短距離MCMCを用いた事前及び後方サンプリングによる潜時空間EMM学習の一般的な実践は、さらなる進歩を妨げている。
本稿では,MCMCサンプリングのための単純だが効果的な拡散型アモータイズ手法を導入し,それに基づく潜時空間EMMのための新しい学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-05T00:23:34Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
高次元データに基づくエネルギーベースモデル(EBM)の訓練は、困難かつ時間を要する可能性がある。
EBMと、GANや拡散モデルのような他の生成フレームワークとの間には、サンプル品質に顕著なギャップがある。
本研究では,協調拡散回復可能性 (CDRL) を提案する。
論文 参考訳(メタデータ) (2023-09-10T22:05:24Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
エネルギーベースモデル (EBMs) は、非正規化ログ密度を直接パラメータ化する汎用密度推定モデルである。
我々は、異なる種類の生成モデル、正規化フロー(NF)を用いたESMのための新しい最大可能性トレーニングアルゴリズムを提案する。
本手法はトレーニング中にNFをEMMに適合させ,NF支援サンプリング方式によりESMの正確な勾配が常に得られるようにする。
論文 参考訳(メタデータ) (2023-06-01T13:58:06Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
エネルギーベースモデリングは教師なし学習への有望なアプローチであり、単一のモデルから多くの下流アプリケーションを生み出す。
コントラスト的アプローチ(contrastive approach)"でエネルギーベースモデルを学習する際の主な困難は、各イテレーションで現在のエネルギー関数からサンプルを生成することである。
本稿では,これらのサンプルを取得し,現行モデルからの粗大なMCMCサンプリングを回避するための代替手法を提案する。
論文 参考訳(メタデータ) (2021-11-26T23:41:07Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - No MCMC for me: Amortized sampling for fast and stable training of
energy-based models [62.1234885852552]
エネルギーベースモデル(EBM)は、不確実性を表す柔軟で魅力的な方法である。
本稿では,エントロピー規則化ジェネレータを用いてEMMを大規模に訓練し,MCMCサンプリングを記憶する簡単な方法を提案する。
次に、最近提案されたジョイント・エナジー・モデル(JEM)に推定器を適用し、元の性能と高速で安定したトレーニングとを一致させる。
論文 参考訳(メタデータ) (2020-10-08T19:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。