Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model
- URL: http://arxiv.org/abs/2301.09430v4
- Date: Wed, 1 May 2024 09:51:07 GMT
- Title: Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model
- Authors: Yiyang Shen, Mingqiang Wei, Yongzhen Wang, Xueyang Fu, Jing Qin,
- Abstract summary: We propose RainDiff, the first real-world image deraining paradigm based on diffusion models.
We introduce a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision.
We also propose a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations.
- Score: 51.49854435403139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent diffusion models have exhibited great potential in generative modeling tasks. Part of their success can be attributed to the ability of training stable on huge sets of paired synthetic data. However, adapting these models to real-world image deraining remains difficult for two aspects. First, collecting a large-scale paired real-world clean/rainy dataset is unavailable while regular conditional diffusion models heavily rely on paired data for training. Second, real-world rain usually reflects real-world scenarios with a variety of unknown rain degradation types, which poses a significant challenge for the generative modeling process. To meet these challenges, we propose RainDiff, the first real-world image deraining paradigm based on diffusion models, serving as a new standard bar for real-world image deraining. We address the first challenge by introducing a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision; and the second challenge by proposing a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations. Extensive experiments confirm the superiority of our RainDiff over existing unpaired/semi-supervised methods and show its competitive advantages over several fully-supervised ones.
Related papers
- GenDeg: Diffusion-Based Degradation Synthesis for Generalizable All-in-One Image Restoration [26.434359848151978]
We introduce GenDeg, a conditional diffusion model capable of producing diverse degradation patterns on clean images.
We synthesize over 550k samples across six degradation types: haze, rain, snow, motion blur, low-light, and raindrops.
Our experiments reveal that image restoration models trained on the GenDS dataset exhibit significant improvements in out-of-distribution performance.
arXiv Detail & Related papers (2024-11-26T18:55:49Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Sparse Sampling Transformer with Uncertainty-Driven Ranking for Unified
Removal of Raindrops and Rain Streaks [17.00078021737863]
In the real world, image degradations caused by rain often exhibit a combination of rain streaks and raindrops, thereby increasing the challenges of recovering the underlying clean image.
This paper aims to present an efficient and flexible mechanism to learn and model degradation relationships in a global view.
arXiv Detail & Related papers (2023-08-27T16:33:11Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Semi-Supervised Video Deraining with Dynamic Rain Generator [59.71640025072209]
This paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer.
Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks.
Various prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them.
arXiv Detail & Related papers (2021-03-14T14:28:57Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z) - Semi-DerainGAN: A New Semi-supervised Single Image Deraining Network [45.78251508028359]
We propose a new semi-supervised GAN-based deraining network termed Semi-DerainGAN.
It can use both synthetic and real rainy images in a uniform network using two supervised and unsupervised processes.
To deliver better deraining results, we design a paired discriminator for distinguishing the real pairs from fake pairs.
arXiv Detail & Related papers (2020-01-23T07:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.