Structural Residual Learning for Single Image Rain Removal
- URL: http://arxiv.org/abs/2005.09228v1
- Date: Tue, 19 May 2020 05:52:13 GMT
- Title: Structural Residual Learning for Single Image Rain Removal
- Authors: Hong Wang, Yichen Wu, Qi Xie, Qian Zhao, Yong Liang, Deyu Meng
- Abstract summary: This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
- Score: 48.87977695398587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To alleviate the adverse effect of rain streaks in image processing tasks,
CNN-based single image rain removal methods have been recently proposed.
However, the performance of these deep learning methods largely relies on the
covering range of rain shapes contained in the pre-collected training
rainy-clean image pairs. This makes them easily trapped into the
overfitting-to-the-training-samples issue and cannot finely generalize to
practical rainy images with complex and diverse rain streaks. Against this
generalization issue, this study proposes a new network architecture by
enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the
network finely comply with the prior knowledge of general rain streaks, and
thus regulates sound rain shapes capable of being well extracted from rainy
images in both training and predicting stages. Such a general regularization
function naturally leads to both its better training accuracy and testing
generalization capability even for those non-seen rain configurations. Such
superiority is comprehensively substantiated by experiments implemented on
synthetic and real datasets both visually and quantitatively as compared with
current state-of-the-art methods.
Related papers
- TRG-Net: An Interpretable and Controllable Rain Generator [61.2760968459789]
This study proposes a novel deep learning based rain generator, which fully takes the physical generation mechanism underlying rains into consideration.
Its significance lies in that the generator not only elaborately design essential elements of the rain to simulate expected rains, but also finely adapt to complicated and diverse practical rainy images.
Our unpaired generation experiments demonstrate that the rain generated by the proposed rain generator is not only of higher quality, but also more effective for deraining and downstream tasks.
arXiv Detail & Related papers (2024-03-15T03:27:39Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
We propose RainDiff, the first real-world image deraining paradigm based on diffusion models.
We introduce a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision.
We also propose a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations.
arXiv Detail & Related papers (2023-01-23T13:34:01Z) - Single Image Deraining via Rain-Steaks Aware Deep Convolutional Neural
Network [16.866000078306815]
An improved weighted guided image filter (iWGIF) is proposed to extract high frequency information from a rainy image.
The high frequency information mainly includes rain steaks and noise, and it can guide the rain steaks aware deep convolutional neural network (RSADCNN) to pay more attention to rain steaks.
arXiv Detail & Related papers (2022-09-16T09:16:03Z) - Not Just Streaks: Towards Ground Truth for Single Image Deraining [42.15398478201746]
We propose a large-scale dataset of real-world rainy and clean image pairs.
We propose a deep neural network that reconstructs the underlying scene by minimizing a rain-robust loss between rainy and clean images.
arXiv Detail & Related papers (2022-06-22T00:10:06Z) - Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for
Mixture of Rain Removal [18.04268933542476]
We propose a new SEMI-supervised Mixture Of rain REmoval Generative Adversarial Network (Semi-MoreGAN)
Semi-MoreGAN consists of four key modules: (I) a novel attentional depth prediction network to provide precise depth estimation; (ii) a context feature prediction network composed of several well-designed detailed residual blocks to produce detailed image context features; (iii) a pyramid depth-guided non-local network to effectively integrate the image context with the depth information, and produce the final rain-free images; and (iv) a comprehensive semi-supervised loss function to make the model not limited
arXiv Detail & Related papers (2022-04-28T11:35:26Z) - Deep Single Image Deraining using An Asymetric Cycle Generative and
Adversarial Framework [16.59494337699748]
We propose a novel Asymetric Cycle Generative and Adrial framework (ACGF) for single image deraining.
ACGF trains on both synthetic and real rainy images while simultaneously capturing both rain streaks and fog features.
Experiments on benchmark rain-fog and rain datasets show that ACGF outperforms state-of-the-art deraining methods.
arXiv Detail & Related papers (2022-02-19T16:14:10Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
We specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet)
RCDNet embeds the intrinsic priors of rain streaks and has clear interpretability.
By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted.
arXiv Detail & Related papers (2021-07-14T16:08:11Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.