論文の概要: DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion
- arxiv url: http://arxiv.org/abs/2301.09474v1
- Date: Mon, 23 Jan 2023 15:18:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 13:26:46.728982
- Title: DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion
- Title(参考訳): DIFFormer:エネルギー制約拡散によるスケーラブル(グラフ)トランス
- Authors: Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, Junchi
Yan
- Abstract要約: 本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
- 参考スコア(独自算出の注目度): 66.21290235237808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world data generation often involves complex inter-dependencies among
instances, violating the IID-data hypothesis of standard learning paradigms and
posing a challenge for uncovering the geometric structures for learning desired
instance representations. To this end, we introduce an energy constrained
diffusion model which encodes a batch of instances from a dataset into
evolutionary states that progressively incorporate other instances' information
by their interactions. The diffusion process is constrained by descent criteria
w.r.t.~a principled energy function that characterizes the global consistency
of instance representations over latent structures. We provide rigorous theory
that implies closed-form optimal estimates for the pairwise diffusion strength
among arbitrary instance pairs, which gives rise to a new class of neural
encoders, dubbed as DIFFormer (diffusion-based Transformers), with two
instantiations: a simple version with linear complexity for prohibitive
instance numbers, and an advanced version for learning complex structures.
Experiments highlight the wide applicability of our model as a general-purpose
encoder backbone with superior performance in various tasks, such as node
classification on large graphs, semi-supervised image/text classification, and
spatial-temporal dynamics prediction.
- Abstract(参考訳): 現実世界のデータ生成には、しばしばインスタンス間の複雑な相互依存があり、標準学習パラダイムのiidデータ仮説に違反し、望ましいインスタンス表現を学習するための幾何学的構造を明らかにするための課題となる。
この目的のために、データセットから進化状態へインスタンスのバッチをエンコードするエネルギー制約拡散モデルを導入し、その相互作用によって他のインスタンスの情報を取り込む。
拡散過程は下降条件 w.r.t.~ 潜在構造上のインスタンス表現の大域的一貫性を特徴づける原理エネルギー関数によって制約される。
我々は、任意のインスタンスペア間の対拡散強度の閉形式最適推定を示唆する厳密な理論を提案し、これは、DIFFormer (diffusion-based Transformers)と呼ばれる新しいタイプのニューラルエンコーダを生み出し、二つのインスタンスをインスタンス化する単純なバージョンと、複雑な構造を学ぶための高度なバージョンである。
実験では,大規模グラフのノード分類,半教師付き画像/テキスト分類,空間-時空間ダイナミクス予測など,様々なタスクにおいて優れた性能を持つ汎用エンコーダバックボーンとしてモデルの適用性が強調された。
関連論文リスト
- Factorized Fusion Shrinkage for Dynamic Relational Data [14.87073454889439]
本稿では,すべての分解因子がグループ単位の核融合構造に対して動的に縮小される因子化核融合収縮モデルについて考察する。
提案手法は、推定された動的潜在因子の比較とクラスタリングにおいて、多くの好ましい特性を享受する。
本稿では、最適後部推論と計算スケーラビリティのバランスをとる構造的平均場変動推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-30T21:03:40Z) - Evolution TANN and the discovery of the internal variables and evolution
equations in solid mechanics [0.0]
材料表現をインクリメンタルな定式化から切り離す新しい手法を提案する。
熱力学に基づくニューラルネットワーク(TANN)と内部変数の理論にインスパイアされた進化 TANN(eTANN)は、連続時間である。
提案手法の主な特徴は、通常の微分方程式の形で内部変数の進化方程式の発見である。
論文 参考訳(メタデータ) (2022-09-27T09:25:55Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learningは、目に見えないクラスから見えないクラスに意味的な知識を移すことで、目に見えないクラスと見えないクラスの両方から画像を認識することを目的としている。
生成モデルの利点を生かして、見学したクラスから学んだ知識に基づいて、現実的な見知らぬサンプルを幻覚させることは、有望な解決策である。
本研究では,複数の条件付きアフィン結合層からなるフローベース生成フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-05T04:04:37Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
変分オートエンコーダ(VAE)は2つの反対方向に押される。
既存の方法では、圧縮と再構成の間のレート歪みのトレードオフに問題を絞り込む。
一般化のために学習した表現を再結合する機構とともに,非交叉表現の階層構造を学習するシステムを開発する。
論文 参考訳(メタデータ) (2022-03-09T22:35:02Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
入力に条件付けされた離散化の厳密度を動的に選択する学習を提案する。
コミュニケーションボトルネックの動的に変化する厳密さは、視覚的推論や強化学習タスクにおけるモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-02-02T23:54:26Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Learning normal form autoencoders for data-driven discovery of
universal,parameter-dependent governing equations [3.769860395223177]
複雑系は、自然界において正則である少数の不安定性と分岐を示す。
このようなパラメトリック不安定性は、数学的には普遍的アンフォールディング(un-folding)または正規形式力学によって特徴づけられる。
本稿では,基礎となるパラメトリック依存を捉える座標変換を発見するためのディープラーニングオートエンコーダを提案する。
論文 参考訳(メタデータ) (2021-06-09T14:25:18Z) - Deep Conditional Transformation Models [0.0]
特徴集合上の結果変数条件の累積分布関数(CDF)を学習することは依然として困難である。
条件変換モデルは、条件付きCDFの大規模なクラスをモデル化できる半パラメトリックなアプローチを提供する。
我々は,新しいネットワークアーキテクチャを提案し,異なるモデル定義の詳細を提供し,適切な制約を導出する。
論文 参考訳(メタデータ) (2020-10-15T16:25:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。