論文の概要: Adapting the Hypersphere Loss Function from Anomaly Detection to Anomaly
Segmentation
- arxiv url: http://arxiv.org/abs/2301.09602v1
- Date: Mon, 23 Jan 2023 18:06:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-24 12:49:07.765115
- Title: Adapting the Hypersphere Loss Function from Anomaly Detection to Anomaly
Segmentation
- Title(参考訳): 異常検出から異常セグメンテーションへの超球ロス関数の適応
- Authors: Joao P. C. Bertoldo, Santiago Velasco-Forero, Jesus Angulo, Etienne
Decenci\`ere
- Abstract要約: 完全畳み込みデータ記述(FCDD)の漸進的改善を提案する。
FCDDは、異常検出から画像異常セグメンテーション(すなわち異常局在)への一級分類アプローチの適応である
我々は、元の損失関数を解析し、前任のハイパースフィア(HSC)によく似た代替関数を提案する。
- 参考スコア(独自算出の注目度): 2.217547045999963
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an incremental improvement to Fully Convolutional Data Description
(FCDD), an adaptation of the one-class classification approach from anomaly
detection to image anomaly segmentation (a.k.a. anomaly localization). We
analyze its original loss function and propose a substitute that better
resembles its predecessor, the Hypersphere Classifier (HSC). Both are compared
on the MVTec Anomaly Detection Dataset (MVTec-AD) -- training images are
flawless objects/textures and the goal is to segment unseen defects -- showing
that consistent improvement is achieved by better designing the pixel-wise
supervision.
- Abstract(参考訳): 本稿では,異常検出から画像異常セグメンテーション(異常局所化)への一クラス分類アプローチの適応として,FCDD(Fully Convolutional Data Description)の漸進的な改善を提案する。
元の損失関数を解析し,前任のハイパースフィア分類器(HSC)によく似た代替関数を提案する。
どちらもMVTec Anomaly Detection Dataset (MVTec-AD)で比較されている -- トレーニングイメージは欠陥のないオブジェクト/コンテキストであり、未確認の欠陥をセグメントすることを目的としている。
関連論文リスト
- Change-Aware Siamese Network for Surface Defects Segmentation under Complex Background [0.6407952035735353]
変更検出フレームワークにおける欠陥セグメント化を解消する変更対応のSiameseネットワークを提案する。
トランスフォーマーベースのエンコーダを導くために,新しいマルチクラスのコントラスト損失を導入した。
距離マップで示される差分は、変更対応デコーダにスキップ接続され、クラス間およびクラス外の両方の欠陥の位置をアシストする。
論文 参考訳(メタデータ) (2024-09-01T02:48:11Z) - Image-level Regression for Uncertainty-aware Retinal Image Segmentation [3.7141182051230914]
我々は,新たな不確実性認識変換(SAUNA)を導入する。
以上の結果から,SAUNA変換の統合とセグメント化損失は,異なるセグメンテーションモデルにおいて大きな性能向上をもたらすことが示唆された。
論文 参考訳(メタデータ) (2024-05-27T04:17:10Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Investigating Shift Equivalence of Convolutional Neural Networks in
Industrial Defect Segmentation [3.843350895842836]
産業欠陥分割タスクでは、モデルの出力整合性(等価性とも呼ばれる)がしばしば見過ごされる。
CNNにおける従来のサンプリングレイヤの代替として,コンポーネントアテンション多相サンプリング(CAPS)と呼ばれる新しいダウン/アップサンプリング層が提案されている。
マイクロサーフェス欠陥(MSD)データセットと4つの実世界の産業的欠陥データセットの実験結果から,提案手法は高い等価性とセグメンテーション性能を示すことが示された。
論文 参考訳(メタデータ) (2023-09-29T00:04:47Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
劣化した低解像度画像中の物体を検出するための,新しい自己教師型フレームワークを提案する。
本手法は, 既存手法と比較して, 異変劣化状況に直面する場合に比べ, 優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-05T09:36:13Z) - GradViT: Gradient Inversion of Vision Transformers [83.54779732309653]
我々は,視力変換器(ViT)の勾配に基づく逆攻撃に対する脆弱性を実証する。
自然に見える画像にランダムノイズを最適化するGradViTという手法を提案する。
元の(隠された)データに対する前例のない高い忠実さと近接性を観察する。
論文 参考訳(メタデータ) (2022-03-22T17:06:07Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation [30.499125737099185]
異常検出は、入力画像が異常を含むかどうかを二項決定する。
我々は,自己教師付き学習を用いたパッチベースの手法に,サポートベクタデータ記述(SVDD)を拡張した。
本研究は,提案手法の有効性と産業応用の可能性を示すものである。
論文 参考訳(メタデータ) (2020-06-29T14:19:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。