論文の概要: Differentiable bit-rate estimation for neural-based video codec
enhancement
- arxiv url: http://arxiv.org/abs/2301.09776v1
- Date: Tue, 24 Jan 2023 01:36:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 14:39:40.535182
- Title: Differentiable bit-rate estimation for neural-based video codec
enhancement
- Title(参考訳): ニューラルベースビデオコーデックエンハンスメントのためのビットレートの差分推定
- Authors: Amir Said, Manish Kumar Singh, Reza Pourreza
- Abstract要約: ニューラルネットワーク(NN)は、符号化されたビデオの前処理と後処理によって、標準的なビデオ圧縮を改善することができる。
NNトレーニングを最適にするためには、標準的なプロキシを、推定ビットレートと歪みのデリバティブを提供するプロキシに置き換える必要がある。
本稿では、エンド・ツー・エンドのニューラルコーデックのトレーニングで使用されるタイプに類似したビットレート推定のための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 2.592974861902384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks (NN) can improve standard video compression by pre- and
post-processing the encoded video. For optimal NN training, the standard codec
needs to be replaced with a codec proxy that can provide derivatives of
estimated bit-rate and distortion, which are used for gradient
back-propagation. Since entropy coding of standard codecs is designed to take
into account non-linear dependencies between transform coefficients, bit-rates
cannot be well approximated with simple per-coefficient estimators. This paper
presents a new approach for bit-rate estimation that is similar to the type
employed in training end-to-end neural codecs, and able to efficiently take
into account those statistical dependencies. It is defined from a mathematical
model that provides closed-form formulas for the estimates and their gradients,
reducing the computational complexity. Experimental results demonstrate the
method's accuracy in estimating HEVC/H.265 codec bit-rates.
- Abstract(参考訳): ニューラルネットワーク(NN)は、符号化されたビデオの前処理と後処理によって、標準的なビデオ圧縮を改善することができる。
最適なnnトレーニングには、標準的なコーデックを、勾配バックプロパゲーションに使用される推定ビットレートと歪みのデリバティブを提供するコーデックプロキシに置き換える必要がある。
標準コーデックのエントロピー符号化は変換係数間の非線形依存性を考慮した設計であるため、ビットレートは単純な対係数推定器では十分に近似できない。
本稿では,エンド・ツー・エンドのニューラルコーデックのトレーニングに使用されるタイプに類似したビットレート推定のための新しい手法を提案する。
これは、推定値とその勾配に対する閉形式公式を提供する数学的モデルから定義され、計算複雑性を減少させる。
実験結果はHEVC/H.265コーデックビットレートの推定における手法の精度を示す。
関連論文リスト
- VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression [29.368893236587343]
最近のニューラルオーディオ圧縮モデルでは、残留ベクトル量子化(RVQ)が徐々に採用されている
これらのモデルはフレーム毎に一定数のコードブックを使用し、レート・歪曲トレードオフの点では最適である。
本稿では,音声コーデックの可変RVQ (VRVQ) を提案する。
論文 参考訳(メタデータ) (2024-10-08T13:18:24Z) - Accelerating Learnt Video Codecs with Gradient Decay and Layer-wise
Distillation [17.980800481385195]
本稿では, 勾配減衰と適応層ワイド蒸留に基づく新しいモデル非依存プルーニング手法を提案する。
その結果,BD-PSNRでは最大65%のMACと2倍のスピードアップ,0.3dB未満のBD-PSNRが得られた。
論文 参考訳(メタデータ) (2023-12-05T09:26:09Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
我々は、ニューラル演算子学習が本質的に近似誤差を誘導する直感の上に構築する。
提案手法では,GPUメモリ使用量を最大50%削減し,スループットを58%向上する。
論文 参考訳(メタデータ) (2023-07-27T17:42:06Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
低密度パリティチェック(LDPC)やBCH符号など、様々な符号化方式の競合復号性能を示す。
ニューラルネットワーク(NN)は、与えられたグラフ上で一般化されたメッセージパッシングアルゴリズムを学習する。
提案するデコーダを,従来のチャネル復号法および最近のディープラーニングに基づく結果と比較した。
論文 参考訳(メタデータ) (2022-07-29T15:29:18Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
サンプルをしきい値にすることでスパース分布を学習できる変分スパース符号化の新しい手法を提案する。
まず,線形発生器を訓練し,その性能,統計的効率,勾配推定に優れることを示す。
論文 参考訳(メタデータ) (2022-05-07T14:49:50Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Improved CNN-based Learning of Interpolation Filters for Low-Complexity
Inter Prediction in Video Coding [5.46121027847413]
本稿では,ニューラルネットワークを用いた新しい予測手法を提案する。
新たなトレーニングフレームワークにより、各ネットワークブランチは特定の分数シフトに類似することができる。
Versatile Video Coding (VVC)テストモデルで実装されると、0.77%、1.27%、および2.25%のBDレートの節約が達成される。
論文 参考訳(メタデータ) (2021-06-16T16:48:01Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
我々は、計算複雑性を低減し、ニューラルネットワーク処理を高速化する畳み込みニューラルネットワーク変換を考える。
畳み込みニューラルネットワーク(CNN)の使用は、計算的に要求が多すぎるにもかかわらず、画像認識の標準的なアプローチである。
論文 参考訳(メタデータ) (2020-02-18T17:42:13Z) - Variational Bayesian Quantization [31.999462074510305]
訓練されたモデルにおける連続潜伏表現の定量化のための新しいアルゴリズムを提案する。
固定量子化スキームにモデルを組み込む現在のエンドツーエンドのニューラル圧縮法とは異なり、我々のアルゴリズムはモデル設計とトレーニングを量子化から分離する。
我々のアルゴリズムは連続領域への算術符号の新たな拡張と見なすことができる。
論文 参考訳(メタデータ) (2020-02-18T00:15:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。