論文の概要: LDMIC: Learning-based Distributed Multi-view Image Coding
- arxiv url: http://arxiv.org/abs/2301.09799v1
- Date: Tue, 24 Jan 2023 03:47:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 14:28:24.182917
- Title: LDMIC: Learning-based Distributed Multi-view Image Coding
- Title(参考訳): LDMIC:学習型分散マルチビュー画像符号化
- Authors: Xinjie Zhang, Jiawei Shao, Jun Zhang
- Abstract要約: マルチビュー画像圧縮は3D関連アプリケーションにおいて重要な役割を果たす。
既存の方法では、残りの情報だけでなく、対応する差分を圧縮するためにジョイントエンコーディングが必要である。
学習に基づく分散マルチビュー画像符号化フレームワークを設計する。
- 参考スコア(独自算出の注目度): 5.157089773775356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-view image compression plays a critical role in 3D-related
applications. Existing methods adopt a predictive coding architecture, which
requires joint encoding to compress the corresponding disparity as well as
residual information. This demands collaboration among cameras and enforces the
epipolar geometric constraint between different views, which makes it
challenging to deploy these methods in distributed camera systems with randomly
overlapping fields of view. Meanwhile, distributed source coding theory
indicates that efficient data compression of correlated sources can be achieved
by independent encoding and joint decoding, which motivates us to design a
learning-based distributed multi-view image coding (LDMIC) framework. With
independent encoders, LDMIC introduces a simple yet effective joint context
transfer module based on the cross-attention mechanism at the decoder to
effectively capture the global inter-view correlations, which is insensitive to
the geometric relationships between images. Experimental results show that
LDMIC significantly outperforms both traditional and learning-based MIC methods
while enjoying fast encoding speed. Code will be released at
https://github.com/Xinjie-Q/LDMIC.
- Abstract(参考訳): マルチビュー画像圧縮は3D関連アプリケーションにおいて重要な役割を果たす。
既存の手法では予測符号化アーキテクチャが採用されており、その場合の差分と残差情報を圧縮するために共同符号化が必要となる。
これにより、カメラ間のコラボレーションが要求され、異なるビュー間のエピポーラ幾何学的制約が強制されるため、ランダムに重なり合う視野を持つ分散カメラシステムにおいて、これらの方法の展開が困難になる。
一方、分散音源符号化理論は、独立符号化と共同復号により相関音源の効率的なデータ圧縮を実現することが可能であり、学習に基づく分散多視点画像符号化(LDMIC)フレームワークの設計を動機付けている。
独立エンコーダでは、画像間の幾何学的関係に敏感なグローバルなビュー間相関を効果的に捉えるために、デコーダのクロスアテンション機構に基づくシンプルで効果的なジョイントコンテキスト転送モジュールを導入する。
実験の結果,LDMICは符号化速度を高速に保ちながら,従来のMIC法と学習ベースのMIC法の両方に優れていた。
コードはhttps://github.com/Xinjie-Q/LDMICでリリースされる。
関連論文リスト
- Neural Distributed Image Compression with Cross-Attention Feature
Alignment [1.2234742322758418]
一対のステレオ画像は、重なり合う視野を持ち、同期および校正された一対のカメラによってキャプチャされる。
1つの画像は圧縮・送信され、もう1つの画像はデコーダでのみ利用できると仮定する。
提案アーキテクチャでは、入力画像をDNNを用いて潜時空間にマッピングし、潜時表現を定量化し、エントロピー符号化を用いて無害に圧縮する。
論文 参考訳(メタデータ) (2022-07-18T10:15:04Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
Co-Salient Object Detection (CoSOD)の目標は、2つ以上の関連する画像を含むクエリグループに一般的に現れる有能なオブジェクトを見つけることである。
本稿では,グローバル対応モデリング(GCM)とローカル対応モデリング(LCM)を含む,グローバル・ローカル協調学習アーキテクチャを提案する。
提案したGLNetは3つの一般的なCoSODベンチマークデータセットに基づいて評価され、我々のモデルが小さなデータセット(約3k画像)でトレーニングされた場合、一部の大規模データセット(約8k-200k画像)でトレーニングされた11の最先端の競合製品(約8k-200k画像)を上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-19T14:32:41Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
ニューラルデータに依存した変換を構築し,各画像の符号化効率を最適化する連続オンラインモード決定機構を導入する。
実験の結果,提案したニューラルシンタクス設計と連続オンラインモード決定機構の有効性が示された。
論文 参考訳(メタデータ) (2022-03-09T14:56:48Z) - Transformer-based Image Compression [18.976159633970177]
Transformer-based Image Compression (TIC) アプローチは、標準変分オートエンコーダ(VAE)アーキテクチャをメインおよびハイパーエンコーダデコーダのペアで再利用する。
TICは、Deep Convolutional Neural Network(CNN)ベースの学習画像符号化(lic)メソッドや、最近承認されたVersatile Video Coding(VVC)標準のハンドクラフトルールベースの内部プロファイルなど、最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-11-12T13:13:20Z) - Video Coding for Machine: Compact Visual Representation Compression for
Intelligent Collaborative Analytics [101.35754364753409]
Video Coding for Machines (VCM) は、ビデオ/画像圧縮と特徴圧縮をある程度別々の研究トラックにブリッジすることを約束している。
本稿では,既存の学術・産業活動に基づくVCM方法論と哲学を要約する。
論文 参考訳(メタデータ) (2021-10-18T12:42:13Z) - Deep Relational Metric Learning [84.95793654872399]
本稿では,画像クラスタリングと検索のためのディープリレーショナルメトリック学習フレームワークを提案する。
我々は、クラス間分布とクラス内分布の両方をモデル化するために、異なる側面から画像を特徴付ける特徴のアンサンブルを学ぶ。
広く使われているCUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、我々のフレームワークが既存の深層学習方法を改善し、非常に競争力のある結果をもたらすことを示した。
論文 参考訳(メタデータ) (2021-08-23T09:31:18Z) - Learned Image Compression with Discretized Gaussian-Laplacian-Logistic
Mixture Model and Concatenated Residual Modules [24.21096210541511]
学習された画像圧縮フレームワークの2つの重要な構成要素は、潜在表現のエントロピーモデルと、符号化/復号化ネットワークアーキテクチャである。
本稿では,よりフレキシブルなガウス・ラプラシア・ロジスティック混合モデル(GLLMM)を提案する。
符号化/復号化ネットワーク設計部では、複数の残差ブロックを追加のショートカット接続で直列接続するa4:d残差ブロック(CRB)を提案する。
論文 参考訳(メタデータ) (2021-07-14T02:54:22Z) - Coding for Distributed Multi-Agent Reinforcement Learning [12.366967700730449]
ストラグラーは、様々なシステム障害が存在するため、分散学習システムで頻繁に発生する。
本稿では,ストラグラーの存在下でのMARLアルゴリズムの学習を高速化する分散学習フレームワークを提案する。
最大距離分離可能(MDS)コード、ランダムスパースコード、レプリケーションベースのコード、通常の低密度パリティチェック(LDPC)コードなど、さまざまなコーディングスキームも検討されている。
論文 参考訳(メタデータ) (2021-01-07T00:22:34Z) - Learned Multi-Resolution Variable-Rate Image Compression with
Octave-based Residual Blocks [15.308823742699039]
一般化オクターブ畳み込み(GoConv)と一般化オクターブ畳み込み(GoTConv)を用いた新しい可変レート画像圧縮フレームワークを提案する。
単一モデルが異なるビットレートで動作し、複数レートの画像特徴を学習できるようにするため、新しい目的関数が導入される。
実験結果から,H.265/HEVCベースのBPGや最先端の学習に基づく可変レート法などの標準コーデックよりも高い性能を示した。
論文 参考訳(メタデータ) (2020-12-31T06:26:56Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。