論文の概要: Image Super-Resolution using Efficient Striped Window Transformer
- arxiv url: http://arxiv.org/abs/2301.09869v1
- Date: Tue, 24 Jan 2023 09:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 14:10:26.936514
- Title: Image Super-Resolution using Efficient Striped Window Transformer
- Title(参考訳): 高能率角形ウィンドウ変換器を用いた画像超解像
- Authors: Jinpeng Shi, Hui Li, Tianle Liu, Yulong Liu, Mingjian Zhang, Jinchen
Zhu, Ling Zheng, Shizhuang Weng
- Abstract要約: 本稿では,効率的なストライプウィンドウトランス (ESWT) を提案する。
ESWTは効率的な変換層(ETL)で構成されており、クリーンな構造と冗長な操作を避けることができる。
トランスの可能性をさらに活用するために,新しいフレキシブルウィンドウトレーニング戦略を提案する。
- 参考スコア(独自算出の注目度): 6.815956004383743
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, transformer-based methods have made impressive progress in
single-image super-resolu-tion (SR). However, these methods are difficult to
apply to lightweight SR (LSR) due to the challenge of balancing model
performance and complexity. In this paper, we propose an efficient striped
window transformer (ESWT). ESWT consists of efficient transformation layers
(ETLs), allowing a clean structure and avoiding redundant operations. Moreover,
we designed a striped window mechanism to obtain a more efficient ESWT in
modeling long-term dependencies. To further exploit the potential of the
transformer, we propose a novel flexible window training strategy. Without any
additional cost, this strategy can further improve the performance of ESWT.
Extensive experiments show that the proposed method outperforms
state-of-the-art transformer-based LSR methods with fewer parameters, faster
inference, smaller FLOPs, and less memory consumption, achieving a better
trade-off between model performance and complexity.
- Abstract(参考訳): 近年, 単一像超解離反応 (SR) において, トランスフォーマー法は顕著な進歩を遂げている。
しかし,軽量sr (lsr) では,モデルの性能と複雑さのバランスをとることが困難である。
本稿では,効率のよい窓形変圧器(eswt)を提案する。
ESWTは効率的な変換層(ETL)で構成されており、クリーンな構造と冗長な操作を避けることができる。
さらに,長期依存関係のモデリングにおいて,より効率的なESWTを実現するために,ストライプウィンドウ機構を設計した。
トランスの可能性をさらに活用するために,新しいフレキシブルウィンドウトレーニング戦略を提案する。
追加のコストがなければ、この戦略はESWTの性能をさらに向上させることができる。
拡張実験により,提案手法は,パラメータが小さく,推論が速く,FLOPが小さく,メモリ消費が小さく,モデル性能と複雑性のトレードオフが良好であることを示す。
関連論文リスト
- Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
本研究では,Residual Local Feature Network (RLFN)を提案する。
主なアイデアは、3つの畳み込みレイヤを局所的な特徴学習に使用して、機能の集約を単純化することだ。
さらに,NTIRE 2022の高効率超解像問題において,第1位を獲得した。
論文 参考訳(メタデータ) (2022-05-16T08:46:34Z) - Self-Calibrated Efficient Transformer for Lightweight Super-Resolution [21.63691922827879]
本稿では,この問題を解決するために,SCET(Self-Calibrated Efficient Transformer)ネットワークを提案する。
SCETのアーキテクチャは、主に自己校正モジュールと効率的なトランスフォーマーブロックで構成されている。
ネットワーク全体の異なる設定に関する総合的な結果を提供する。
論文 参考訳(メタデータ) (2022-04-19T14:20:32Z) - BSRT: Improving Burst Super-Resolution with Swin Transformer and
Flow-Guided Deformable Alignment [84.82352123245488]
この研究は新しいアーキテクチャを使ってBurst Super-Resolution (BurstSR)タスクに対処し、ノイズ、不一致、低解像度のRAWバーストから高品質な画像を復元する必要がある。
本稿では,フレーム間情報抽出と再構築の能力を大幅に向上するBurst Super-Resolution Transformer (BSRT)を提案する。
我々のBSRTはNTIRE2022 Burst Super-Resolution Challengeで優勝した。
論文 参考訳(メタデータ) (2022-04-18T14:23:10Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Sliced Recursive Transformer [23.899076070924153]
視覚変換器における再帰操作は、追加パラメータを伴わずにパラメータ利用を改善することができる。
我々のモデル Sliced Recursive Transformer (SReT) は、効率的な視覚変換のための様々な設計と互換性がある。
論文 参考訳(メタデータ) (2021-11-09T17:59:14Z) - Augmented Shortcuts for Vision Transformers [49.70151144700589]
視覚変換器モデルにおけるショートカットと特徴の多様性の関係について検討する。
本稿では,元のショートカットに並列に学習可能なパラメータを追加経路を挿入する拡張ショートカット方式を提案する。
ベンチマークデータセットを用いて実験を行い,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-06-30T09:48:30Z) - Easy and Efficient Transformer : Scalable Inference Solution For large
NLP mode [14.321889138798072]
本稿では,超大規模事前学習モデル最適化手法を提案する。
推論エンジンとして Easy and Efficient Transformer (EET) が提案されている。
EETは、コンテキストの長さに応じて1.5-15倍のスピードアップを達成します。
論文 参考訳(メタデータ) (2021-04-26T11:00:56Z) - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [91.05073136215886]
「Actor-Learner Distillation」は、大容量学習者モデルから小容量学習者モデルへ学習の進捗を移す。
Actor-Learner Distillation を用いて,トランスフォーマー学習モデルの明確なサンプル効率向上を再現する,いくつかの挑戦的なメモリ環境を実証する。
論文 参考訳(メタデータ) (2021-04-04T17:56:34Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
継続的学習のための簡易タスク特化機能マップ変換戦略を提案する。
これらは新しいタスクを学習するための強力な柔軟性を提供し、ベースアーキテクチャに最小パラメータを追加することで実現される。
本手法の有効性と効率を,判別(cifar-100およびimagenet-1k)および生成的タスクの一連の実験を用いて実証する。
論文 参考訳(メタデータ) (2021-03-25T01:48:14Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
深部畳み込みニューラルネットワーク(CNN)の発展により,ビデオ超解像法(VSR)は近年,顕著な成功を収めている。
本稿では,動作補償を効率的に捕捉し,適応的にネットワークにフィードバックする,シンプルで効果的なブロックである動き適応型フィードバックセル(MAFC)を提案する。
論文 参考訳(メタデータ) (2020-02-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。