論文の概要: Investigating Labeler Bias in Face Annotation for Machine Learning
- arxiv url: http://arxiv.org/abs/2301.09902v3
- Date: Thu, 24 Oct 2024 13:38:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:42:38.597825
- Title: Investigating Labeler Bias in Face Annotation for Machine Learning
- Title(参考訳): 機械学習のための顔アノテーションにおけるラベルバイアスの調査
- Authors: Luke Haliburton, Sinksar Ghebremedhin, Robin Welsch, Albrecht Schmidt, Sven Mayer,
- Abstract要約: ラベル付け作業において,異なる民族や性別の人々のイメージを用いたラベル付けバイアスの存在について検討する。
その結果,参加者は意思決定プロセスに影響を与えるステレオタイプを持っていることがわかった。
ラベル付けバイアスがデータセットにどのように影響するかを論じ、その後、トレーニングしたモデルについて論じる。
- 参考スコア(独自算出の注目度): 35.11321925140099
- License:
- Abstract: In a world increasingly reliant on artificial intelligence, it is more important than ever to consider the ethical implications of artificial intelligence on humanity. One key under-explored challenge is labeler bias, which can create inherently biased datasets for training and subsequently lead to inaccurate or unfair decisions in healthcare, employment, education, and law enforcement. Hence, we conducted a study to investigate and measure the existence of labeler bias using images of people from different ethnicities and sexes in a labeling task. Our results show that participants possess stereotypes that influence their decision-making process and that labeler demographics impact assigned labels. We also discuss how labeler bias influences datasets and, subsequently, the models trained on them. Overall, a high degree of transparency must be maintained throughout the entire artificial intelligence training process to identify and correct biases in the data as early as possible.
- Abstract(参考訳): 人工知能にますます依存する世界では、人工知能が人類に与える影響を考えることがこれまで以上に重要である。
これは本質的にバイアスのあるデータセットを作成し、その後、医療、雇用、教育、法執行における不正確または不公平な決定につながる。
そこで我々は,異なる民族や性別のイメージをラベル付けタスクに用いて,ラベル付けバイアスの存在を調査・測定する研究を行った。
その結果、参加者は意思決定プロセスに影響を及ぼすステレオタイプを持ち、ラベルの人口層が割り当てられたラベルに影響を及ぼすことが明らかとなった。
また、ラベル付けバイアスがデータセットにどのように影響するかについても論じ、その後、トレーニングしたモデルについて論じる。
全体として、データのバイアスをできるだけ早く特定し、修正するために、人工知能のトレーニングプロセス全体を通して高いレベルの透明性を維持する必要があります。
関連論文リスト
- Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - Data Bias Management [17.067962372238135]
私たちは、データのバイアスがエンドユーザに与える影響、バイアスの発生源、そして、その上で何をすべきかという視点を示します。
データバイアスは、すべてのケースにおいて必ずしも取り除くべきものではなく、代わりに研究の注意がバイアス除去からバイアス管理に移行するべきだ、と私たちは主張する。
論文 参考訳(メタデータ) (2023-05-15T10:07:27Z) - Fairness and Bias in Truth Discovery Algorithms: An Experimental
Analysis [7.575734557466221]
群衆労働者は信頼できないラベルを提供することもある。
真理探索(TD)アルゴリズムを用いて、競合するワーカー応答からコンセンサスラベルを決定する。
我々はTDアルゴリズムのバイアスと公平性を体系的に研究する。
論文 参考訳(メタデータ) (2023-04-25T04:56:35Z) - Gender Stereotyping Impact in Facial Expression Recognition [1.5340540198612824]
近年,機械学習に基づくモデルが表情認識(FER)における最も一般的なアプローチとなっている。
公開可能なFERデータセットでは、見かけ上の性別表現は概ねバランスが取れているが、個々のラベルでの性別表現はそうではない。
我々は、特定のラベルの性別比を変化させることで、異なる量のステレオタイプバイアスを持つ微分データセットを生成する。
我々は、最低バイアス条件下で、性別間の特定の感情の認識において、最大で29 % の差を観察する。
論文 参考訳(メタデータ) (2022-10-11T10:52:23Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - Debiased Pseudo Labeling in Self-Training [77.83549261035277]
ディープニューラルネットワークは、大規模ラベル付きデータセットの助けを借りて、幅広いタスクで顕著なパフォーマンスを達成する。
ラベル付きデータの要求を軽減するため、ラベル付けされていないデータに擬似ラベルを付けることにより、学術と産業の両方で自己学習が広く使われている。
疑似ラベルの生成と利用を2つの独立した頭文字で分離するデバイアスドを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:14:33Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Mitigating Gender Bias in Machine Learning Data Sets [5.075506385456811]
ジェンダーバイアスは雇用広告や採用ツールの文脈で特定されている。
本稿では,機械学習のためのトレーニングデータにおける性別バイアスの同定のための枠組みを提案する。
論文 参考訳(メタデータ) (2020-05-14T12:06:02Z) - Measuring Social Biases of Crowd Workers using Counterfactual Queries [84.10721065676913]
性別、人種などに基づく社会的バイアスは、主にバイアス付きトレーニングデータセットを介して、汚染された機械学習(ML)パイプラインに示されている。
クラウドソーシング(Crowdsourcing)は、ラベル付きトレーニングデータセットを収集するための一般的な費用効果尺度であり、群衆労働者の社会的偏見に免疫がない。
本研究では, 集団労働者ごとの社会的バイアスの程度を定量化するための, 対実的公正度に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-04-04T21:41:55Z) - A survey of bias in Machine Learning through the prism of Statistical
Parity for the Adult Data Set [5.277804553312449]
偏見を自動決定にどのように導入できるかを理解することの重要性を示す。
まず、公正学習問題、特に二項分類設定における数学的枠組みについて述べる。
そこで,本研究では,現実およびよく知られた成人所得データセットの標準差分効果指標を用いて,偏見の有無を定量化することを提案する。
論文 参考訳(メタデータ) (2020-03-31T14:48:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。