論文の概要: Membership Inference of Diffusion Models
- arxiv url: http://arxiv.org/abs/2301.09956v1
- Date: Tue, 24 Jan 2023 12:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 13:43:27.350570
- Title: Membership Inference of Diffusion Models
- Title(参考訳): 拡散モデルのメンバシップ推論
- Authors: Hailong Hu, Jun Pang
- Abstract要約: 本稿では,拡散モデルに対するメンバシップ推論攻撃に関する最初の研究を体系的に提示する。
損失ベースと可能性ベースという2つの攻撃手法が提案されている。
本手法は,プライバシに敏感なデータに対して,さまざまなデータセットに対して,最先端の拡散モデルを用いて評価する。
- 参考スコア(独自算出の注目度): 9.355840335132124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed the tremendous success of diffusion models in
data synthesis. However, when diffusion models are applied to sensitive data,
they also give rise to severe privacy concerns. In this paper, we
systematically present the first study about membership inference attacks
against diffusion models, which aims to infer whether a sample was used to
train the model. Two attack methods are proposed, namely loss-based and
likelihood-based attacks. Our attack methods are evaluated on several
state-of-the-art diffusion models, over different datasets in relation to
privacy-sensitive data. Extensive experimental evaluations show that our
attacks can achieve remarkable performance. Furthermore, we exhaustively
investigate various factors which can affect attack performance. Finally, we
also evaluate the performance of our attack methods on diffusion models trained
with differential privacy.
- Abstract(参考訳): 近年,データ合成における拡散モデルが大きな成功を収めている。
しかし、拡散モデルがセンシティブなデータに適用されると、プライバシーに関する深刻な懸念がもたらされる。
本稿では,拡散モデルに対するメンバシップ推論攻撃に関する最初の研究を体系的に発表する。
損失ベースと可能性ベースという2つの攻撃手法が提案されている。
本手法は,プライバシに敏感なデータに対して異なるデータセットに対して,複数の最先端拡散モデルを用いて評価する。
広範な実験結果から,我々の攻撃は顕著な性能を発揮できることが示された。
さらに,攻撃性能に影響を与える諸要因を網羅的に検討した。
最後に,差分プライバシーを訓練した拡散モデルに対する攻撃手法の性能評価を行った。
関連論文リスト
- Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - Membership-Doctor: Comprehensive Assessment of Membership Inference
Against Machine Learning Models [11.842337448801066]
本稿では,様々なメンバーシップ推論攻撃と防衛の大規模測定を行う。
脅威モデル(例えば、同一構造や、シャドーモデルとターゲットモデルとの同一分布)のいくつかの仮定は不要である。
また、実験室のデータセットではなく、インターネットから収集された実世界のデータに対する攻撃を最初に実施しました。
論文 参考訳(メタデータ) (2022-08-22T17:00:53Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
プロパティ推論攻撃の形式的および一般的な定義を提案する。
以上の結果から,安価なメタクラス化攻撃は高価なメタクラス化攻撃と同じくらい効果的であることが示唆された。
我々は、最先端のプロパティ推論攻撃を畳み込みニューラルネットワークに拡張する。
論文 参考訳(メタデータ) (2021-09-13T14:54:39Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
本稿では,知識盗むプロセスで使用されるデータの分散設計に焦点をあてた,新しい視点代替トレーニングを提案する。
これら2つのモジュールの組み合わせにより、代替モデルとターゲットモデルの一貫性がさらに向上し、敵攻撃の有効性が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-26T07:26:29Z) - ML-Doctor: Holistic Risk Assessment of Inference Attacks Against Machine
Learning Models [64.03398193325572]
機械学習(ML)モデルに対する推論攻撃により、敵はトレーニングデータやモデルパラメータなどを学ぶことができる。
私たちは、メンバシップ推論、モデル反転、属性推論、モデル盗難の4つの攻撃に集中しています。
私たちの分析では、MLモデルオーナがモデルをデプロイするリスクを評価することができる、モジュール化された再使用可能なソフトウェアであるML-Doctorに依存しています。
論文 参考訳(メタデータ) (2021-02-04T11:35:13Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Membership Leakage in Label-Only Exposures [10.875144776014533]
本稿では,機械学習モデルに対する決定に基づくメンバシップ推論攻撃を提案する。
特に、転送攻撃と境界攻撃という2種類の意思決定ベースの攻撃を考案する。
また,量的および質的分析に基づく会員推定の成功に関する新たな知見も提示する。
論文 参考訳(メタデータ) (2020-07-30T15:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。