Gaussian conversion protocol for heralded generation of qunaught states
- URL: http://arxiv.org/abs/2301.10030v1
- Date: Tue, 24 Jan 2023 14:17:07 GMT
- Title: Gaussian conversion protocol for heralded generation of qunaught states
- Authors: Yu Zheng, Alessandro Ferraro, Anton Frisk Kockum, and Giulia Ferrini
- Abstract summary: bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
- Score: 66.81715281131143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of fault-tolerant quantum computing, continuous-variable systems
can be utilized to protect quantum information from noise through the use of
bosonic codes. These codes map qubit-type quantum information onto the larger
bosonic Hilbert space, and can be divided into two main categories:
translational-symmetric codes, such as Gottesman-Kitaev-Preskill (GKP) codes,
and rotational-symmetric codes, including cat and binomial codes. The
relationship between these families of codes has not yet been fully understood.
We present an iterative protocol for converting between two instances of these
codes GKP qunaught states and four-foldsymmetric binomial states corresponding
to a zero-logical encoded qubit - using only Gaussian operations. This
conversion demonstrates the potential for universality of binomial states for
all-Gaussian quantum computation and provides a new method for the heraladed
preparation of GKP states. Through numerical simulation, we obtain GKP qunaught
states with a fidelity of over 98% and a probability of approximately 3.14%,
after only two steps of our iterative protocol, though higher fidelities can be
achieved with additional iterations at the cost of lower success probabilities.
Related papers
- Exploring the quantum capacity of a Gaussian random displacement channel using Gottesman-Kitaev-Preskill codes and maximum likelihood decoding [0.9208007322096532]
We analyze the error-correction performance of several families of multi-mode Gottesman-Kitaev-Preskill codes.
We find that the error threshold of the surface-square GKP code is remarkably close to $sigma=1/sqrtesimeq 0.6065$.
By focusing on multi-mode GKP codes that encode just one logical qubit over multiple bosonic modes, we show that GKP codes can achieve non-zero quantum state transmission rates.
arXiv Detail & Related papers (2024-11-06T21:47:20Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - Safeguarding Oscillators and Qudits with Distributed Two-Mode Squeezing [5.087080493308913]
Multi-mode Gottesman-Kitaev-Preskill (GKP) codes have shown great promise in enhancing the protection of both discrete and analog quantum information.
We provide a unique example where techniques from quantum sensing can be applied to improve multi-mode GKP codes.
Inspired by distributed quantum sensing, we propose the distributed two-mode squeezing (dtms) GKP codes that offer benefits in error correction with minimal active encoding operations.
arXiv Detail & Related papers (2024-02-08T18:24:22Z) - Error-corrected quantum repeaters with GKP qudits [1.1279808969568252]
The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into individual bosonic modes.
The GKP code has found recent applications in theoretical investigations of quantum communication protocols.
arXiv Detail & Related papers (2023-03-28T15:04:06Z) - Good Gottesman-Kitaev-Preskill codes from the NTRU cryptosystem [5.497441137435869]
We introduce a new class of random Gottesman-Kitaev-Preskill (GKP) codes derived from the cryptanalysis of the so-called NTRU cryptosystem.
The derived class of NTRU-GKP codes has the additional property that decoding for a displacement noise model is equivalent to decrypting the NTRU cryptosystem.
This construction highlights how the GKP code bridges aspects of classical error correction, quantum error correction as well as post-quantum cryptography.
arXiv Detail & Related papers (2023-03-04T14:39:20Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Continuous-variable quantum computing architectures based upon the Gottesmann-Kitaev-Preskill (GKP) encoding have emerged as a promising candidate.
We study the code-capacity behaviour of a rectangular-lattice GKP encoding with a repetition code under an isotropic Gaussian displacement channel.
arXiv Detail & Related papers (2022-12-21T22:56:05Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.