Adaptive Probabilistic Forecasting of Electricity (Net-)Load
- URL: http://arxiv.org/abs/2301.10090v2
- Date: Mon, 24 Apr 2023 12:33:30 GMT
- Title: Adaptive Probabilistic Forecasting of Electricity (Net-)Load
- Authors: Joseph de Vilmarest, Jethro Browell, Matteo Fasiolo, Yannig Goude (EDF
R\&D), Olivier Wintenberger (SU)
- Abstract summary: Electricity load forecasting is a necessary capability for power system operators and electricity market participants.
The proliferation of local generation, demand response, and electrification of heat and transport are changing the fundamental drivers of electricity load.
We consider probabilistic rather than point forecasting; indeed, uncertainty is required to operate electricity systems efficiently and reliably.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electricity load forecasting is a necessary capability for power system
operators and electricity market participants. The proliferation of local
generation, demand response, and electrification of heat and transport are
changing the fundamental drivers of electricity load and increasing the
complexity of load modelling and forecasting. We address this challenge in two
ways. First, our setting is adaptive; our models take into account the most
recent observations available, yielding a forecasting strategy able to
automatically respond to changes in the underlying process. Second, we consider
probabilistic rather than point forecasting; indeed, uncertainty quantification
is required to operate electricity systems efficiently and reliably. Our
methodology relies on the Kalman filter, previously used successfully for
adaptive point load forecasting. The probabilistic forecasts are obtained by
quantile regressions on the residuals of the point forecasting model. We
achieve adaptive quantile regressions using the online gradient descent; we
avoid the choice of the gradient step size considering multiple learning rates
and aggregation of experts. We apply the method to two data sets: the regional
net-load in Great Britain and the demand of seven large cities in the United
States. Adaptive procedures improve forecast performance substantially in both
use cases for both point and probabilistic forecasting.
Related papers
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
This paper studies the forecasting problem of multiple electric vehicle charging stations (EVCSs) in a hierarchical probabilistic manner.
For each charging station, a deep learning model based on a partial input convex neural network (PICNN) is trained to predict the day-ahead charging demand's conditional distribution.
Differentiable convex optimization layers (DCLs) are used to reconcile the scenarios sampled from the distributions to yield coherent scenarios.
arXiv Detail & Related papers (2024-11-01T03:35:04Z) - Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand [8.068451210598678]
Power systems operate under uncertainty originating from multiple factors that are impossible to account for deterministically.
Recent progress in deep learning has helped to significantly improve the accuracy of point forecasts.
We propose a novel general approach for distributional forecasting capable of predicting arbitrary quantiles.
arXiv Detail & Related papers (2024-04-26T14:43:19Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Electrical peak demand forecasting- A review [7.5337868245858255]
This paper provides a timely and comprehensive overview of peak load demand forecast methods in the literature.
In this paper we first give a precise and unified problem definition of peak load demand forecast.
Second, 139 papers on peak load forecast methods were systematically reviewed where methods were classified into different stages based on the timeline.
Third, a comparative analysis of peak load forecast methods are summarized and different optimizing methods to improve the forecast performance are discussed.
arXiv Detail & Related papers (2021-08-03T10:04:33Z) - Random vector functional link neural network based ensemble deep
learning for short-term load forecasting [14.184042046855884]
This paper proposes a novel ensemble deep Random Functional Link (edRVFL) network for electricity load forecasting.
The hidden layers are stacked to enforce deep representation learning.
The model generates the forecasts by ensembling the outputs of each layer.
arXiv Detail & Related papers (2021-07-30T01:20:48Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - Probabilistic Load Forecasting Based on Adaptive Online Learning [7.373617024876726]
This paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models.
We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios.
The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.
arXiv Detail & Related papers (2020-11-30T12:02:26Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.