Probabilistic Load Forecasting Based on Adaptive Online Learning
- URL: http://arxiv.org/abs/2011.14721v4
- Date: Thu, 15 Aug 2024 07:37:47 GMT
- Title: Probabilistic Load Forecasting Based on Adaptive Online Learning
- Authors: Verónica Álvarez, Santiago Mazuelas, José A. Lozano,
- Abstract summary: This paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models.
We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios.
The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.
- Score: 7.373617024876726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Load forecasting is crucial for multiple energy management tasks such as scheduling generation capacity, planning supply and demand, and minimizing energy trade costs. Such relevance has increased even more in recent years due to the integration of renewable energies, electric cars, and microgrids. Conventional load forecasting techniques obtain single-value load forecasts by exploiting consumption patterns of past load demand. However, such techniques cannot assess intrinsic uncertainties in load demand, and cannot capture dynamic changes in consumption patterns. To address these problems, this paper presents a method for probabilistic load forecasting based on the adaptive online learning of hidden Markov models. We propose learning and forecasting techniques with theoretical guarantees, and experimentally assess their performance in multiple scenarios. In particular, we develop adaptive online learning techniques that update model parameters recursively, and sequential prediction techniques that obtain probabilistic forecasts using the most recent parameters. The performance of the method is evaluated using multiple datasets corresponding with regions that have different sizes and display assorted time-varying consumption patterns. The results show that the proposed method can significantly improve the performance of existing techniques for a wide range of scenarios.
Related papers
- Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - An Adaptive Approach for Probabilistic Wind Power Forecasting Based on
Meta-Learning [7.422947032954223]
This paper studies an adaptive approach for probabilistic wind power forecasting (WPF) including offline and online learning procedures.
In the offline learning stage, a base forecast model is trained via inner and outer loop updates of meta-learning.
In the online learning stage, the base forecast model is applied to online forecasting combined with incremental learning techniques.
arXiv Detail & Related papers (2023-08-15T18:28:22Z) - Masked Multi-Step Probabilistic Forecasting for Short-to-Mid-Term
Electricity Demand [7.544120398993689]
Masked Multi-Step Multi Probabilistic Forecasting (MMMPF) is a novel and general framework to train any neural network model.
It combines both the temporal information from the past and the known information about the future to make probabilistic predictions.
MMMPF can also generate desired quantiles to capture uncertainty and enable probabilistic planning for grid of the future.
arXiv Detail & Related papers (2023-02-14T04:09:03Z) - Adaptive Probabilistic Forecasting of Electricity (Net-)Load [0.0]
Electricity load forecasting is a necessary capability for power system operators and electricity market participants.
The proliferation of local generation, demand response, and electrification of heat and transport are changing the fundamental drivers of electricity load.
We consider probabilistic rather than point forecasting; indeed, uncertainty is required to operate electricity systems efficiently and reliably.
arXiv Detail & Related papers (2023-01-24T15:56:14Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - A VAE-Based Bayesian Bidirectional LSTM for Renewable Energy Forecasting [0.4588028371034407]
intermittent nature of renewable energy poses new challenges to the network operational planning with underlying uncertainties.
This paper proposes a novel Bayesian probabilistic technique for forecasting renewable power generation by addressing data and model uncertainties.
It is inferred from the numerical results that VAE-Bayesian BiLSTM outperforms other probabilistic deep learning methods in terms of forecasting accuracy and computational efficiency for different sizes of the dataset.
arXiv Detail & Related papers (2021-03-24T03:47:20Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
This paper presents a review of state-of-the-art forecasting methods for smart grid (SG) systems.
Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated.
A comparative case study using the Victorian electricity consumption and American electric power (AEP) is conducted.
arXiv Detail & Related papers (2020-11-25T09:17:07Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.