論文の概要: Generalized Object Search
- arxiv url: http://arxiv.org/abs/2301.10121v1
- Date: Tue, 24 Jan 2023 16:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 13:08:59.812333
- Title: Generalized Object Search
- Title(参考訳): 一般化オブジェクト検索
- Authors: Kaiyu Zheng
- Abstract要約: この論文は、不確実な3次元環境における多目的探索のための方法とシステムを開発する。
ロボットに依存しない,環境に依存しない3次元物体探索システムを構築した。
私はBoston Dynamics Spotロボット、Kinova MOVOロボット、Universal Robots UR5eロボットアームにデプロイしました。
- 参考スコア(独自算出の注目度): 0.9137554315375919
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Future collaborative robots must be capable of finding objects. As such a
fundamental skill, we expect object search to eventually become an
off-the-shelf capability for any robot, similar to e.g., object detection,
SLAM, and motion planning. However, existing approaches either make unrealistic
compromises (e.g., reduce the problem from 3D to 2D), resort to ad-hoc, greedy
search strategies, or attempt to learn end-to-end policies in simulation that
are yet to generalize across real robots and environments. This thesis argues
that through using Partially Observable Markov Decision Processes (POMDPs) to
model object search while exploiting structures in the human world (e.g.,
octrees, correlations) and in human-robot interaction (e.g., spatial language),
a practical and effective system for generalized object search can be achieved.
In support of this argument, I develop methods and systems for (multi-)object
search in 3D environments under uncertainty due to limited field of view,
occlusion, noisy, unreliable detectors, spatial correlations between objects,
and possibly ambiguous spatial language (e.g., "The red car is behind Chase
Bank"). Besides evaluation in simulators such as PyGame, AirSim, and AI2-THOR,
I design and implement a robot-independent, environment-agnostic system for
generalized object search in 3D and deploy it on the Boston Dynamics Spot
robot, the Kinova MOVO robot, and the Universal Robots UR5e robotic arm, to
perform object search in different environments. The system enables, for
example, a Spot robot to find a toy cat hidden underneath a couch in a kitchen
area in under one minute. This thesis also broadly surveys the object search
literature, proposing taxonomies in object search problem settings, methods and
systems.
- Abstract(参考訳): 将来の協調ロボットは、物体を見つける能力を持つ必要がある。
このような基本的なスキルとして、オブジェクト探索は最終的には、オブジェクト検出、SLAM、モーションプランニングのような、あらゆるロボットの既製の能力になることを期待している。
しかし、既存のアプローチでは、非現実的な妥協(例えば、問題を3dから2dに減らす)、アドホックな検索戦略、あるいは実際のロボットや環境をまたいで一般化していないシミュレーションのエンドツーエンドポリシーを学習しようとする。
この論文は、部分観測可能なマルコフ決定過程(POMDP)を用いて、人間の世界の構造(オクツリー、相関など)と人間とロボットの相互作用(空間言語など)を利用してオブジェクト探索をモデル化することで、一般化されたオブジェクト探索のための実用的で効果的なシステムを実現することができると主張している。
この議論を支援するために,物体間の空間的相関や,不明瞭な空間的言語(例えば「赤い車はチェイスバンクの背後にある」など)など,視野,閉塞,ノイズ,信頼できない検出器,不確実性を考慮した3次元環境における多目的探索法とシステムを開発した。
PyGame、AirSim、AI2-THORなどのシミュレータの評価に加えて、私は3Dで一般化されたオブジェクト探索のためのロボット非依存の環境認識システムを設計し、Boston Dynamics Spotロボット、Kinova MOVOロボット、Universal Robots UR5eロボットアームにデプロイし、異なる環境でオブジェクト探索を行う。
このシステムは、例えばspotロボットがキッチンエリアのソファの下に隠れているおもちゃの猫を1分以内に見つけることができる。
この論文はまた、対象探索文献を幅広く調査し、対象探索問題設定、方法、システムに分類論を提案する。
関連論文リスト
- Object Goal Navigation with End-to-End Self-Supervision [110.6053241629366]
家庭のロボットは、ユーザがまず自分の家にあるものすべてに注釈を付けることなく、ターゲットの場所へ移動できなければならない。
このオブジェクトナビゲーション課題に対する現在のアプローチは、実際のロボットをテストせず、高価なセマンティックラベル付き3Dメッシュに依存している。
本研究では, エンド・ツー・エンドの自己監督型エンボディエージェントを提案する。
論文 参考訳(メタデータ) (2022-12-09T03:41:40Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Object Goal Navigation Based on Semantics and RGB Ego View [9.702784248870522]
本稿では,RGBエゴビューを前提として,サービスロボットが屋内環境のセマンティックな意思決定を行えるようにするためのアーキテクチャと方法論を提案する。
ロボットはジオセムマップ(幾何マップと意味マップのリレーショナル組み合わせ)に基づいてナビゲートする。
提案手法は, 平均完了時間に対するゲーミフィケーション評価において, 人間のユーザよりも優れていた。
論文 参考訳(メタデータ) (2022-10-20T19:23:08Z) - Extracting Zero-shot Common Sense from Large Language Models for Robot
3D Scene Understanding [25.270772036342688]
本稿では,ラベリングルームのための大規模言語モデルに埋め込まれた共通感覚を活用する新しい手法を提案する。
提案アルゴリズムは,現代の空間認識システムによって生成された3次元シーングラフで動作する。
論文 参考訳(メタデータ) (2022-06-09T16:05:35Z) - Reasoning with Scene Graphs for Robot Planning under Partial
Observability [7.121002367542985]
我々は,ロボットが視覚的文脈情報で推論できるロボット計画のためのシーン解析アルゴリズムを開発した。
シミュレーションで複数の3D環境と実際のロボットが収集したデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2022-02-21T18:45:56Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human
Videos [59.58105314783289]
ドメインに依存しないビデオ識別器(DVD)は、2つのビデオが同じタスクを実行しているかどうかを判断するために識別器を訓練することによりマルチタスク報酬関数を学習する。
DVDは、人間のビデオの広いデータセットで少量のロボットデータから学習することで、一般化することができる。
DVDと視覚モデル予測制御を組み合わせることで、実際のWidowX200ロボットのロボット操作タスクを単一の人間のデモから未知の環境で解決できます。
論文 参考訳(メタデータ) (2021-03-31T05:25:05Z) - Reactive Human-to-Robot Handovers of Arbitrary Objects [57.845894608577495]
本稿では、未知の物体の人間とロボットのハンドオーバを可能にするビジョンベースシステムを提案する。
提案手法は,クローズドループ運動計画とリアルタイムかつ時間的に一貫性のあるグリップ生成を組み合わせたものである。
提案手法の汎用性,ユーザビリティ,ロバスト性を,26種類の家庭用オブジェクトからなる新しいベンチマークで実証した。
論文 参考訳(メタデータ) (2020-11-17T21:52:22Z) - Occlusion-Aware Search for Object Retrieval in Clutter [4.693170687870612]
乱雑な棚から対象物を回収する操作タスクに対処する。
対象物が隠された場合、ロボットはそれを回収するために溝を探索しなければならない。
クローズドループにおけるオクルージョン認識動作を生成するためのデータ駆動型ハイブリッドプランナを提案する。
論文 参考訳(メタデータ) (2020-11-06T13:15:27Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。