論文の概要: Bipartite Graph Diffusion Model for Human Interaction Generation
- arxiv url: http://arxiv.org/abs/2301.10134v1
- Date: Tue, 24 Jan 2023 16:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-25 12:57:35.109371
- Title: Bipartite Graph Diffusion Model for Human Interaction Generation
- Title(参考訳): 相互作用生成のための二部グラフ拡散モデル
- Authors: Baptiste Chopin, Hao Tang, Mohamed Daoudi
- Abstract要約: 二部グラフ拡散法(BiGraphDiff)を提案する。
提案手法は,人間のインタラクション生成タスクの先行ベンチマークにおいて,最新の結果が得られることを示す。
- 参考スコア(独自算出の注目度): 14.00936927341507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of natural human motion interactions is a hot topic in
computer vision and computer animation. It is a challenging task due to the
diversity of possible human motion interactions. Diffusion models, which have
already shown remarkable generative capabilities in other domains, are a good
candidate for this task. In this paper, we introduce a novel bipartite graph
diffusion method (BiGraphDiff) to generate human motion interactions between
two persons. Specifically, bipartite node sets are constructed to model the
inherent geometric constraints between skeleton nodes during interactions. The
interaction graph diffusion model is transformer-based, combining some
state-of-the-art motion methods. We show that the proposed achieves new
state-of-the-art results on leading benchmarks for the human interaction
generation task.
- Abstract(参考訳): 人間の自然な動きの相互作用の生成は、コンピュータビジョンとコンピュータアニメーションのホットトピックである。
人間の動作の相互作用の多様性のため、これは難しい課題である。
拡散モデルは、他の領域ですでに顕著な生成能力を示しており、このタスクのよい候補である。
本稿では,バイパートグラフ拡散法(BiGraphDiff)を提案する。
具体的には、相互作用中の骨格ノード間の固有の幾何学的制約をモデル化するために二成分ノード集合が構成される。
相互作用グラフ拡散モデルは変換器ベースであり、いくつかの最先端の動作法を組み合わせる。
提案手法は,人間のインタラクション生成タスクの先行ベンチマークにおいて,最新の結果が得られることを示す。
関連論文リスト
- Bipartite Graph Reasoning GANs for Person Pose and Facial Image
Synthesis [201.39323496042527]
本稿では、人物のポーズと顔画像合成という2つの課題に対して、生成的敵対ネットワーク(BiGraphGAN)を推論する新しい二部グラフを提案する。
提案するグラフ生成器は,ポーズ・ツー・ポーズ関係とポーズ・ツー・イメージ関係をモデル化する2つの新しいブロックから構成される。
論文 参考訳(メタデータ) (2022-11-12T18:27:00Z) - Two-person Graph Convolutional Network for Skeleton-based Human
Interaction Recognition [11.650290790796323]
グラフ畳み込みネットワーク(GCN)は、骨格に基づく人間の行動認識領域において従来の手法より優れていた。
本稿では,関節間の空間的相互作用の相関を表す新しい2人グラフを提案する。
実験は、提案した2人グラフトポロジを利用する場合、相互作用と個々の動作の両方において精度の向上を示す。
論文 参考訳(メタデータ) (2022-08-12T08:50:15Z) - IGFormer: Interaction Graph Transformer for Skeleton-based Human
Interaction Recognition [26.05948629634753]
骨格に基づく対話認識のための新しい対話グラフ変換器 (IGFormer) ネットワークを提案する。
IGFormerは、対話体部分間の意味的および距離的相関に基づいて相互作用グラフを構築する。
また,ヒトの骨格配列をBody-Part-Time配列に変換するセマンティック分割モジュールを提案する。
論文 参考訳(メタデータ) (2022-07-25T12:11:15Z) - Interaction Transformer for Human Reaction Generation [61.22481606720487]
本稿では,時間的,空間的両方の注意を持つトランスフォーマーネットワークからなる対話型トランスフォーマー(InterFormer)を提案する。
我々の手法は一般的であり、より複雑で長期的な相互作用を生成するのに利用できる。
論文 参考訳(メタデータ) (2022-07-04T19:30:41Z) - Representation Learning for Dynamic Hyperedges [7.716156977428555]
ハイパーリンク予測のための時間点プロセスモデルを開発する。
提案モデルでは、進化をモデル化するためにノードの動的表現技術を使用し、この表現をニューラルネットワークプロセスフレームワークで推論する。
論文 参考訳(メタデータ) (2021-12-19T14:24:37Z) - GAN-based Reactive Motion Synthesis with Class-aware Discriminators for
Human-human Interaction [14.023527193608144]
本稿では,他のキャラクタからアクティブな動作を与えられたキャラクタの反応運動を合成する半教師付きGANシステムを提案する。
合成運動の高品質さは, ジェネレータの有効設計を示し, 合成の識別性もまた, 判別器の強度を示している。
論文 参考訳(メタデータ) (2021-10-01T13:13:07Z) - Scene-aware Generative Network for Human Motion Synthesis [125.21079898942347]
シーンと人間の動きの相互作用を考慮した新しい枠組みを提案する。
人間の動きの不確実性を考慮すると、このタスクを生成タスクとして定式化する。
我々は、人間の動きと文脈シーンとの整合性を強制するための識別器を備えた、GANに基づく学習アプローチを導出する。
論文 参考訳(メタデータ) (2021-05-31T09:05:50Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - DRG: Dual Relation Graph for Human-Object Interaction Detection [65.50707710054141]
人-物間相互作用(HOI)検出の課題に対処する。
既存の方法は、人間と物体の対の相互作用を独立に認識するか、複雑な外観に基づく共同推論を行う。
本稿では,抽象的空間意味表現を活用して,各対象対を記述し,二重関係グラフを用いてシーンの文脈情報を集約する。
論文 参考訳(メタデータ) (2020-08-26T17:59:40Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - DAG-Net: Double Attentive Graph Neural Network for Trajectory
Forecasting [31.77814227034554]
本稿では,単一エージェントの将来の目標と異なるエージェント間の相互作用を考慮に入れた新たな反復生成モデルを提案する。
このモデルは、二重注意に基づくグラフニューラルネットワークを利用して、異なるエージェント間の相互影響に関する情報を収集する。
提案手法は,都市環境とスポーツの両分野において,最先端の成果を得られるモデルである。
論文 参考訳(メタデータ) (2020-05-26T12:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。