Bipartite Graph Diffusion Model for Human Interaction Generation
- URL: http://arxiv.org/abs/2301.10134v2
- Date: Fri, 3 Nov 2023 21:42:54 GMT
- Title: Bipartite Graph Diffusion Model for Human Interaction Generation
- Authors: Baptiste Chopin, Hao Tang, Mohamed Daoudi
- Abstract summary: We introduce a novel bipartite graph diffusion method (BiGraphDiff) to generate human motion interactions between two persons.
We show that the proposed achieves new state-of-the-art results on leading benchmarks for the human interaction generation task.
- Score: 11.732108478773196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of natural human motion interactions is a hot topic in
computer vision and computer animation. It is a challenging task due to the
diversity of possible human motion interactions. Diffusion models, which have
already shown remarkable generative capabilities in other domains, are a good
candidate for this task. In this paper, we introduce a novel bipartite graph
diffusion method (BiGraphDiff) to generate human motion interactions between
two persons. Specifically, bipartite node sets are constructed to model the
inherent geometric constraints between skeleton nodes during interactions. The
interaction graph diffusion model is transformer-based, combining some
state-of-the-art motion methods. We show that the proposed achieves new
state-of-the-art results on leading benchmarks for the human interaction
generation task.
Related papers
- in2IN: Leveraging individual Information to Generate Human INteractions [29.495166514135295]
We introduce in2IN, a novel diffusion model for human-human motion generation conditioned on individual descriptions.
We also propose DualMDM, a model composition technique that combines the motions generated with in2IN and the motions generated by a single-person motion prior pre-trained on HumanML3D.
arXiv Detail & Related papers (2024-04-15T17:59:04Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
We present ReMoS, a denoising diffusion based model that synthesizes full body motion of a person in two person interaction scenario.
We demonstrate ReMoS across challenging two person scenarios such as pair dancing, Ninjutsu, kickboxing, and acrobatics.
We also contribute the ReMoCap dataset for two person interactions containing full body and finger motions.
arXiv Detail & Related papers (2023-11-28T18:59:52Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
This paper addresses a novel task of anticipating 3D human-object interactions (HOIs)
Our task is significantly more challenging, as it requires modeling dynamic objects with various shapes, capturing whole-body motion, and ensuring physically valid interactions.
Experiments on multiple human-object interaction datasets demonstrate the effectiveness of our method for this task, capable of producing realistic, vivid, and remarkably long-term 3D HOI predictions.
arXiv Detail & Related papers (2023-08-31T17:59:08Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - InterGen: Diffusion-based Multi-human Motion Generation under Complex Interactions [49.097973114627344]
We present InterGen, an effective diffusion-based approach that incorporates human-to-human interactions into the motion diffusion process.
We first contribute a multimodal dataset, named InterHuman. It consists of about 107M frames for diverse two-person interactions, with accurate skeletal motions and 23,337 natural language descriptions.
We propose a novel representation for motion input in our interaction diffusion model, which explicitly formulates the global relations between the two performers in the world frame.
arXiv Detail & Related papers (2023-04-12T08:12:29Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Interaction Transformer for Human Reaction Generation [61.22481606720487]
We propose a novel interaction Transformer (InterFormer) consisting of a Transformer network with both temporal and spatial attentions.
Our method is general and can be used to generate more complex and long-term interactions.
arXiv Detail & Related papers (2022-07-04T19:30:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.