Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping
- URL: http://arxiv.org/abs/2402.17960v1
- Date: Wed, 28 Feb 2024 00:57:35 GMT
- Title: Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping
- Authors: Reza Reihanisaransari, Chalapathi Charan Gajjela, Xinyu Wu, Ragib
Ishrak, Sara Corvigno, Yanping Zhong, Jinsong Liu, Anil K. Sood, David
Mayerich, Sebastian Berisha, and Rohith Reddy
- Abstract summary: Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology.
This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude.
- Score: 3.550171634694342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ovarian cancer detection has traditionally relied on a multi-step process
that includes biopsy, tissue staining, and morphological analysis by
experienced pathologists. While widely practiced, this conventional approach
suffers from several drawbacks: it is qualitative, time-intensive, and heavily
dependent on the quality of staining. Mid-infrared (MIR) hyperspectral
photothermal imaging is a label-free, biochemically quantitative technology
that, when combined with machine learning algorithms, can eliminate the need
for staining and provide quantitative results comparable to traditional
histology. However, this technology is slow. This work presents a novel
approach to MIR photothermal imaging that enhances its speed by an order of
magnitude. Our method significantly accelerates data collection by capturing a
combination of high-resolution and interleaved, lower-resolution infrared band
images and applying computational techniques for data interpolation. We
effectively minimize data collection requirements by leveraging sparse data
acquisition and employing curvelet-based reconstruction algorithms. This method
enables the reconstruction of high-quality, high-resolution images from
undersampled datasets and achieving a 10X improvement in data acquisition time.
We assessed the performance of our sparse imaging methodology using a variety
of quantitative metrics, including mean squared error (MSE), structural
similarity index (SSIM), and tissue subtype classification accuracies,
employing both random forest and convolutional neural network (CNN) models,
accompanied by ROC curves. Our statistically robust analysis, based on data
from 100 ovarian cancer patient samples and over 65 million data points,
demonstrates the method's capability to produce superior image quality and
accurately distinguish between different gynecological tissue types with
segmentation accuracy exceeding 95%.
Related papers
- Private, Efficient and Scalable Kernel Learning for Medical Image Analysis [1.7999333451993955]
OKRA (Orthonormal K-fRAmes) is a novel randomized encoding-based approach for kernel-based machine learning.
It significantly enhances scalability and speed compared to current state-of-the-art solutions.
arXiv Detail & Related papers (2024-10-21T10:03:03Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
Histopathology image synthesis aims to address the data shortage issue in training deep learning approaches for accurate cancer detection.
We propose a novel approach that enhances the quality of synthetic images by using nuclei topology and contour regularization.
The proposed approach outperforms Sharp-GAN in all four image quality metrics on two datasets.
arXiv Detail & Related papers (2023-01-24T17:54:01Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - Prediction of low-keV monochromatic images from polyenergetic CT scans
for improved automatic detection of pulmonary embolism [21.47219330040151]
We are training convolutional neural networks that can emulate the generation of monoE images from conventional single energy CT acquisitions.
We expand on these methods through the use of a multi-task optimization approach, under which the networks achieve improved classification as well as generation results.
arXiv Detail & Related papers (2021-02-02T11:42:31Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - StyPath: Style-Transfer Data Augmentation For Robust Histology Image
Classification [6.690876060631452]
We propose a novel pipeline to build robust deep neural networks for AMR classification based on StyPath.
Each image was generated in 1.84 + 0.03 seconds using a single GTX V TITAN and pytorch.
Our results imply that our style-transfer augmentation technique improves histological classification performance.
arXiv Detail & Related papers (2020-07-09T18:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.