A Simple Adaptive Unfolding Network for Hyperspectral Image
Reconstruction
- URL: http://arxiv.org/abs/2301.10208v1
- Date: Tue, 24 Jan 2023 18:28:21 GMT
- Title: A Simple Adaptive Unfolding Network for Hyperspectral Image
Reconstruction
- Authors: Junyu Wang, Shijie Wang, Wenyu Liu, Zengqiang Zheng, Xinggang Wang
- Abstract summary: We present a simple, efficient, and scalable unfolding network, SAUNet, to simplify the network design.
SAUNet can be scaled to non-trivial 13 stages with continuous improvement.
We set new records on CAVE and KAIST HSI reconstruction benchmarks.
- Score: 33.53825801739728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a simple, efficient, and scalable unfolding network, SAUNet, to
simplify the network design with an adaptive alternate optimization framework
for hyperspectral image (HSI) reconstruction. SAUNet customizes a Residual
Adaptive ADMM Framework (R2ADMM) to connect each stage of the network via a
group of learnable parameters to promote the usage of mask prior, which greatly
stabilizes training and solves the accuracy degradation issue. Additionally, we
introduce a simple convolutional modulation block (CMB), which leads to
efficient training, easy scale-up, and less computation. Coupling these two
designs, SAUNet can be scaled to non-trivial 13 stages with continuous
improvement. Without bells and whistles, SAUNet improves both performance and
speed compared with the previous state-of-the-art counterparts, which makes it
feasible for practical high-resolution HSI reconstruction scenarios. We set new
records on CAVE and KAIST HSI reconstruction benchmarks. Code and models are
available at https://github.com/hustvl/SAUNet.
Related papers
- Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - A-SDM: Accelerating Stable Diffusion through Model Assembly and Feature Inheritance Strategies [51.7643024367548]
Stable Diffusion Model is a prevalent and effective model for text-to-image (T2I) and image-to-image (I2I) generation.
This study focuses on reducing redundant computation in SDM and optimizing the model through both tuning and tuning-free methods.
arXiv Detail & Related papers (2024-05-31T21:47:05Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Robust Deep Compressive Sensing with Recurrent-Residual Structural
Constraints [0.0]
Existing deep sensing (CS) methods either ignore adaptive online optimization or depend on costly iterative reconstruction.
This work explores a novel image CS framework with recurrent-residual structural constraint, termed as R$2$CS-NET.
As the first deep CS framework efficiently bridging adaptive online optimization, the R$2$CS-NET integrates the robustness of online optimization with the efficiency and nonlinear capacity of deep learning methods.
arXiv Detail & Related papers (2022-07-15T05:56:13Z) - Learning towards Synchronous Network Memorizability and Generalizability
for Continual Segmentation across Multiple Sites [52.84959869494459]
In clinical practice, a segmentation network is often required to continually learn on a sequential data stream from multiple sites.
Existing methods are usually restricted in either network memorizability on previous sites or generalizability on unseen sites.
This paper aims to tackle the problem of Synchronous Memorizability and Generalizability with a novel proposed SMG-learning framework.
arXiv Detail & Related papers (2022-06-14T13:04:36Z) - Residual Multiplicative Filter Networks for Multiscale Reconstruction [24.962697695403037]
We introduce a new coordinate network architecture and training scheme that enables coarse-to-fine optimization with fine-grained control over the frequency support of learned reconstructions.
We demonstrate how these modifications enable multiscale optimization for coarse-to-fine fitting to natural images.
We then evaluate our model on synthetically generated datasets for the the problem of single-particle cryo-EM reconstruction.
arXiv Detail & Related papers (2022-06-01T20:16:28Z) - AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network [8.127449025802436]
We present a novel recurrent multi-view stereo network based on long short-term memory (LSTM) with adaptive aggregation, namely AA-RMVSNet.
We firstly introduce an intra-view aggregation module to adaptively extract image features by using context-aware convolution and multi-scale aggregation.
We propose an inter-view cost volume aggregation module for adaptive pixel-wise view aggregation, which is able to preserve better-matched pairs among all views.
arXiv Detail & Related papers (2021-08-09T06:10:48Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.