Effective Invertible Arbitrary Image Rescaling
- URL: http://arxiv.org/abs/2209.13055v1
- Date: Mon, 26 Sep 2022 22:22:30 GMT
- Title: Effective Invertible Arbitrary Image Rescaling
- Authors: Zhihong Pan, Baopu Li, Dongliang He, Wenhao Wu, Errui Ding
- Abstract summary: Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
- Score: 77.46732646918936
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Great successes have been achieved using deep learning techniques for image
super-resolution (SR) with fixed scales. To increase its real world
applicability, numerous models have also been proposed to restore SR images
with arbitrary scale factors, including asymmetric ones where images are
resized to different scales along horizontal and vertical directions. Though
most models are only optimized for the unidirectional upscaling task while
assuming a predefined downscaling kernel for low-resolution (LR) inputs, recent
models based on Invertible Neural Networks (INN) are able to increase upscaling
accuracy significantly by optimizing the downscaling and upscaling cycle
jointly. However, limited by the INN architecture, it is constrained to fixed
integer scale factors and requires one model for each scale. Without increasing
model complexity, a simple and effective invertible arbitrary rescaling network
(IARN) is proposed to achieve arbitrary image rescaling by training only one
model in this work. Using innovative components like position-aware scale
encoding and preemptive channel splitting, the network is optimized to convert
the non-invertible rescaling cycle to an effectively invertible process. It is
shown to achieve a state-of-the-art (SOTA) performance in bidirectional
arbitrary rescaling without compromising perceptual quality in LR outputs. It
is also demonstrated to perform well on tests with asymmetric scales using the
same network architecture.
Related papers
- Perceptual-Distortion Balanced Image Super-Resolution is a Multi-Objective Optimization Problem [23.833099288826045]
Training Single-Image Super-Resolution (SISR) models using pixel-based regression losses can achieve high distortion metrics scores.
However, they often results in blurry images due to insufficient recovery of high-frequency details.
We propose a novel method that incorporates Multi-Objective Optimization (MOO) into the training process of SISR models to balance perceptual quality and distortion.
arXiv Detail & Related papers (2024-09-05T02:14:04Z) - MsDC-DEQ-Net: Deep Equilibrium Model (DEQ) with Multi-scale Dilated
Convolution for Image Compressive Sensing (CS) [0.0]
Compressive sensing (CS) is a technique that enables the recovery of sparse signals using fewer measurements than traditional sampling methods.
We develop an interpretable and concise neural network model for reconstructing natural images using CS.
The model, called MsDC-DEQ-Net, exhibits competitive performance compared to state-of-the-art network-based methods.
arXiv Detail & Related papers (2024-01-05T16:25:58Z) - Efficient Model Agnostic Approach for Implicit Neural Representation
Based Arbitrary-Scale Image Super-Resolution [5.704360536038803]
Single image super-resolution (SISR) has experienced significant advancements, primarily driven by deep convolutional networks.
Traditional networks are limited to upscaling images to a fixed scale, leading to the utilization of implicit neural functions for generating arbitrarily scaled images.
We introduce a novel and efficient framework, the Mixture of Experts Implicit Super-Resolution (MoEISR), which enables super-resolution at arbitrary scales.
arXiv Detail & Related papers (2023-11-20T05:34:36Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Enhancing Image Rescaling using Dual Latent Variables in Invertible
Neural Network [42.18106162158025]
A new downscaling latent variable is introduced to model variations in the image downscaling process.
It can improve image upscaling accuracy consistently without sacrificing image quality in downscaled LR images.
It is also shown to be effective in enhancing other INN-based models for image restoration applications like image hiding.
arXiv Detail & Related papers (2022-07-24T23:12:51Z) - Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and
Cycle Idempotence [76.93002743194974]
We propose a method to treat arbitrary rescaling, both upscaling and downscaling, as one unified process.
The proposed model is able to learn upscaling and downscaling simultaneously and achieve bidirectional arbitrary image rescaling.
It is shown to be robust in cycle idempotence test, free of severe degradations in reconstruction accuracy when the downscaling-to-upscaling cycle is applied repetitively.
arXiv Detail & Related papers (2022-03-02T07:42:15Z) - LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
Image Super-Resolution and Beyond [75.37541439447314]
Single image super-resolution (SISR) deals with a fundamental problem of upsampling a low-resolution (LR) image to its high-resolution (HR) version.
This paper proposes a linearly-assembled pixel-adaptive regression network (LAPAR) to strike a sweet spot of deep model complexity and resulting SISR quality.
arXiv Detail & Related papers (2021-05-21T15:47:18Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.