論文の概要: Flow-guided Semi-supervised Video Object Segmentation
- arxiv url: http://arxiv.org/abs/2301.10492v1
- Date: Wed, 25 Jan 2023 10:02:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-26 15:27:50.338223
- Title: Flow-guided Semi-supervised Video Object Segmentation
- Title(参考訳): フロー誘導型半教師付きビデオオブジェクトセグメンテーション
- Authors: Yushan Zhang, Andreas Robinson, Maria Magnusson, Michael Felsberg
- Abstract要約: 半教師付きビデオオブジェクトセグメンテーションのための光フロー誘導手法を提案する。
光フローと画像から組み合わせた情報を抽出するモデルを提案する。
DAVIS 2017とYouTube-VOS 2019の実験では、光学フローから抽出した情報を元のイメージブランチに統合することで、パフォーマンスが向上することが示された。
- 参考スコア(独自算出の注目度): 14.357395825753827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an optical flow-guided approach for semi-supervised video object
segmentation. Optical flow is usually exploited as additional guidance
information in unsupervised video object segmentation. However, its relevance
in semi-supervised video object segmentation has not been fully explored. In
this work, we follow an encoder-decoder approach to address the segmentation
task. A model to extract the combined information from optical flow and the
image is proposed, which is then used as input to the target model and the
decoder network. Unlike previous methods where concatenation is used to
integrate information from image data and optical flow, a simple yet effective
attention mechanism is exploited in our work. Experiments on DAVIS 2017 and
YouTube-VOS 2019 show that by integrating the information extracted from
optical flow into the original image branch results in a strong performance
gain and our method achieves state-of-the-art performance.
- Abstract(参考訳): 半教師付き映像オブジェクトセグメンテーションのための光フロー誘導手法を提案する。
光フローは通常、教師なしのビデオオブジェクトセグメンテーションで追加のガイダンス情報として利用される。
しかし、半教師付きビデオオブジェクトのセグメンテーションにおけるその関連性は十分に検討されていない。
本研究では,セグメント化タスクに対処するエンコーダ-デコーダアプローチに従う。
対象モデルとデコーダネットワークへの入力として使用される光フローと画像から複合情報を抽出するモデルを提案する。
画像データとオプティカルフローからの情報を結合する従来の手法とは異なり,本研究では単純かつ効果的な注意機構が活用されている。
DAVIS 2017とYouTube-VOS 2019の実験では、光学フローから抽出した情報を元のイメージブランチに統合することにより、性能が向上し、我々の手法は最先端のパフォーマンスを達成する。
関連論文リスト
- Moving Object Proposals with Deep Learned Optical Flow for Video Object
Segmentation [1.551271936792451]
我々は、移動オブジェクト提案(MOP)を得るために、ニューラルネットワークの最先端アーキテクチャを提案する。
まず、教師なし畳み込みニューラルネットワーク(UnFlow)をトレーニングし、光学的フロー推定を生成する。
次に、光学フローネットの出力を、完全に畳み込みのSegNetモデルに描画する。
論文 参考訳(メタデータ) (2024-02-14T01:13:55Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - FODVid: Flow-guided Object Discovery in Videos [12.792602427704395]
我々は、個々の複雑さに過度に適合しないように、一般化可能なソリューションを構築することに注力する。
教師なしの環境でビデオオブジェクト(VOS)を解決するために,セグメント出力の導出に基づく新しいパイプライン(FODVid)を提案する。
論文 参考訳(メタデータ) (2023-07-10T07:55:42Z) - Co-attention Propagation Network for Zero-Shot Video Object Segmentation [91.71692262860323]
ゼロショットオブジェクトセグメンテーション(ZS-VOS)は、これらのオブジェクトを事前に知ることなく、ビデオシーケンス内のオブジェクトをセグメンテーションすることを目的としている。
既存のZS-VOSメソッドは、しばしば前景と背景を区別したり、複雑なシナリオで前景を追跡するのに苦労する。
本稿では,オブジェクトの追跡とセグメンテーションが可能なエンコーダデコーダに基づく階層的コアテンション伝搬ネットワーク(HCPN)を提案する。
論文 参考訳(メタデータ) (2023-04-08T04:45:48Z) - Weakly Supervised Instance Segmentation using Motion Information via
Optical Flow [3.0763099528432263]
画像と光の流れから抽出した外観と運動の特徴を利用する2ストリームエンコーダを提案する。
提案手法は,最先端手法の平均精度を3.1倍に向上することを示した。
論文 参考訳(メタデータ) (2022-02-25T22:41:54Z) - FAMINet: Learning Real-time Semi-supervised Video Object Segmentation
with Steepest Optimized Optical Flow [21.45623125216448]
半教師付きビデオオブジェクトセグメンテーション(VOS)は、ビデオシーケンス内のいくつかの動くオブジェクトをセグメント化することを目的としており、これらのオブジェクトは第一フレームのアノテーションによって指定される。
光の流れは、セグメンテーションの精度を向上させるために、多くの既存の半教師付きVOS法で考慮されてきた。
本稿では,特徴抽出ネットワーク(F),外観ネットワーク(A),運動ネットワーク(M),統合ネットワーク(I)からなるFAMINetを提案する。
論文 参考訳(メタデータ) (2021-11-20T07:24:33Z) - The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos [59.12750806239545]
動画は移動成分によって同じシーンを異なる視点で見ることができ、適切な領域分割と領域フローは相互のビュー合成を可能にする。
モデルでは,1枚の画像に対して特徴に基づく領域分割を出力する出現経路と,1枚の画像に対して動作特徴を出力する動き経路の2つの経路から開始する。
セグメントフローに基づく視線合成誤差を最小限に抑えるためにモデルを訓練することにより、我々の外観経路と運動経路は、それぞれ低レベルのエッジや光フローから構築することなく、領域のセグメンテーションとフロー推定を自動的に学習する。
論文 参考訳(メタデータ) (2021-11-11T18:59:11Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z) - Beyond Single Stage Encoder-Decoder Networks: Deep Decoders for Semantic
Image Segmentation [56.44853893149365]
セマンティックセグメンテーションのための単一エンコーダ-デコーダ手法は、セマンティックセグメンテーションの品質とレイヤー数あたりの効率の観点からピークに達している。
そこで本研究では,より多くの情報コンテンツを取得するために,浅層ネットワークの集合を用いたデコーダに基づく新しいアーキテクチャを提案する。
アーキテクチャをさらに改善するために,ネットワークの注目度を高めるために,クラスの再バランスを目的とした重み関数を導入する。
論文 参考訳(メタデータ) (2020-07-19T18:44:34Z) - Motion-Attentive Transition for Zero-Shot Video Object Segmentation [99.44383412488703]
ゼロショットオブジェクトセグメンテーションのためのモーション・アテンタティブ・トランジション・ネットワーク(MATNet)を提案する。
モーション・アテンティブ・トランジション (MAT) と呼ばれる非対称のアテンションブロックは、2ストリームエンコーダ内に設計されている。
このように、エンコーダは深く相互に作用し、物体の動きと外観の間の密な階層的な相互作用を可能にする。
論文 参考訳(メタデータ) (2020-03-09T16:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。