Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective
- URL: http://arxiv.org/abs/2301.10536v1
- Date: Wed, 25 Jan 2023 12:02:12 GMT
- Title: Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective
- Authors: Jiayuan Chen, Xiang Zhang, Yinfei Xu, Tianli Zhao, Renjie Xie and Wei
Xu
- Abstract summary: We propose a novel view for understanding graph neural networks (GNNs)
In this work, we focus on deep GNNs and propose a novel view for understanding them.
We design a more powerful GNN: coupling graph neural network (CoGNet)
- Score: 22.82625446308785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, graph-based models designed for downstream tasks have significantly
advanced research on graph neural networks (GNNs). GNN baselines based on
neural message-passing mechanisms such as GCN and GAT perform worse as the
network deepens. Therefore, numerous GNN variants have been proposed to tackle
this performance degradation problem, including many deep GNNs. However, a
unified framework is still lacking to connect these existing models and
interpret their effectiveness at a high level. In this work, we focus on deep
GNNs and propose a novel view for understanding them. We establish a
theoretical framework via inference on a probabilistic graphical model. Given
the fixed point equation (FPE) derived from the variational inference on the
Markov random fields, the deep GNNs, including JKNet, GCNII, DGCN, and the
classical GNNs, such as GCN, GAT, and APPNP, can be regarded as different
approximations of the FPE. Moreover, given this framework, more accurate
approximations of FPE are brought, guiding us to design a more powerful GNN:
coupling graph neural network (CoGNet). Extensive experiments are carried out
on citation networks and natural language processing downstream tasks. The
results demonstrate that the CoGNet outperforms the SOTA models.
Related papers
- PROXI: Challenging the GNNs for Link Prediction [3.8233569758620063]
We introduce PROXI, which leverages proximity information of node pairs in both graph and attribute spaces.
Standard machine learning (ML) models perform competitively, even outperforming cutting-edge GNN models.
We show that augmenting traditional GNNs with PROXI significantly boosts their link prediction performance.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning.
This paper integrates GNNs with attention mechanism to tackle a challenging nonlinear regression problem: network localization.
We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions.
arXiv Detail & Related papers (2023-11-28T15:05:13Z) - On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models [44.676210493587256]
We propose an innovative solution by constructing infinite tree-structured PGMs that correspond exactly to neural networks.
Our research reveals that DNNs, during forward propagation, indeed perform approximations of PGM inference that are precise in this alternative PGM structure.
arXiv Detail & Related papers (2023-05-27T21:32:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Towards Understanding Graph Neural Networks: An Algorithm Unrolling
Perspective [9.426760895586428]
We introduce a class of unrolled networks built on truncated optimization algorithms for graph signal denoising problems.
The training process of a GNN model can be seen as solving a bilevel optimization problem with a GSD problem at the lower level.
An expressive model named UGDGNN, i.e., unrolled gradient descent GNN, is proposed which inherits appealing theoretical properties.
arXiv Detail & Related papers (2022-06-09T12:54:03Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Attentive Graph Neural Networks for Few-Shot Learning [74.01069516079379]
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks.
Despite its powerful capacity to learn and generalize the model from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep.
We propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism.
arXiv Detail & Related papers (2020-07-14T07:43:09Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.