Towards Understanding Graph Neural Networks: An Algorithm Unrolling
Perspective
- URL: http://arxiv.org/abs/2206.04471v1
- Date: Thu, 9 Jun 2022 12:54:03 GMT
- Title: Towards Understanding Graph Neural Networks: An Algorithm Unrolling
Perspective
- Authors: Zepeng Zhang and Ziping Zhao
- Abstract summary: We introduce a class of unrolled networks built on truncated optimization algorithms for graph signal denoising problems.
The training process of a GNN model can be seen as solving a bilevel optimization problem with a GSD problem at the lower level.
An expressive model named UGDGNN, i.e., unrolled gradient descent GNN, is proposed which inherits appealing theoretical properties.
- Score: 9.426760895586428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The graph neural network (GNN) has demonstrated its superior performance in
various applications. The working mechanism behind it, however, remains
mysterious. GNN models are designed to learn effective representations for
graph-structured data, which intrinsically coincides with the principle of
graph signal denoising (GSD). Algorithm unrolling, a "learning to optimize"
technique, has gained increasing attention due to its prospects in building
efficient and interpretable neural network architectures. In this paper, we
introduce a class of unrolled networks built based on truncated optimization
algorithms (e.g., gradient descent and proximal gradient descent) for GSD
problems. They are shown to be tightly connected to many popular GNN models in
that the forward propagations in these GNNs are in fact unrolled networks
serving specific GSDs. Besides, the training process of a GNN model can be seen
as solving a bilevel optimization problem with a GSD problem at the lower
level. Such a connection brings a fresh view of GNNs, as we could try to
understand their practical capabilities from their GSD counterparts, and it can
also motivate designing new GNN models. Based on the algorithm unrolling
perspective, an expressive model named UGDGNN, i.e., unrolled gradient descent
GNN, is further proposed which inherits appealing theoretical properties.
Extensive numerical simulations on seven benchmark datasets demonstrate that
UGDGNN can achieve superior or competitive performance over the
state-of-the-art models.
Related papers
- Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective [22.82625446308785]
We propose a novel view for understanding graph neural networks (GNNs)
In this work, we focus on deep GNNs and propose a novel view for understanding them.
We design a more powerful GNN: coupling graph neural network (CoGNet)
arXiv Detail & Related papers (2023-01-25T12:02:12Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.