Transfer Learning in Deep Learning Models for Building Load Forecasting:
Case of Limited Data
- URL: http://arxiv.org/abs/2301.10663v2
- Date: Fri, 27 Jan 2023 11:16:08 GMT
- Title: Transfer Learning in Deep Learning Models for Building Load Forecasting:
Case of Limited Data
- Authors: Menna Nawar, Moustafa Shomer, Samy Faddel, and Huangjie Gong
- Abstract summary: This paper proposes a Building-to-Building Transfer Learning framework to overcome the problem and enhance the performance of Deep Learning models.
The proposed approach improved the forecasting accuracy by 56.8% compared to the case of conventional deep learning where training from scratch is used.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise load forecasting in buildings could increase the bill savings
potential and facilitate optimized strategies for power generation planning.
With the rapid evolution of computer science, data-driven techniques, in
particular the Deep Learning models, have become a promising solution for the
load forecasting problem. These models have showed accurate forecasting
results; however, they need abundance amount of historical data to maintain the
performance. Considering the new buildings and buildings with low resolution
measuring equipment, it is difficult to get enough historical data from them,
leading to poor forecasting performance. In order to adapt Deep Learning models
for buildings with limited and scarce data, this paper proposes a
Building-to-Building Transfer Learning framework to overcome the problem and
enhance the performance of Deep Learning models. The transfer learning approach
was applied to a new technique known as Transformer model due to its efficacy
in capturing data trends. The performance of the algorithm was tested on a
large commercial building with limited data. The result showed that the
proposed approach improved the forecasting accuracy by 56.8% compared to the
case of conventional deep learning where training from scratch is used. The
paper also compared the proposed Transformer model to other sequential deep
learning models such as Long-short Term Memory (LSTM) and Recurrent Neural
Network (RNN). The accuracy of the transformer model outperformed other models
by reducing the root mean square error to 0.009, compared to LSTM with 0.011
and RNN with 0.051.
Related papers
- An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Optimizing Dense Feed-Forward Neural Networks [0.0]
We propose a novel feed-forward neural network constructing method based on pruning and transfer learning.
Our approach can compress the number of parameters by more than 70%.
We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network.
arXiv Detail & Related papers (2023-12-16T23:23:16Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
We propose a modular machine learning pipeline for ranking predictions on temporal panel datasets.
The modularity of the pipeline allows the use of different models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks.
Online learning techniques, which require no retraining of models, can be used post-prediction to enhance the results.
arXiv Detail & Related papers (2022-12-30T17:19:00Z) - Temporal Convolution Domain Adaptation Learning for Crops Growth
Prediction [5.966652553573454]
We construct an innovative network architecture based on domain adaptation learning to predict crops growth curves with limited available crop data.
We are the first to use the temporal convolution filters as the backbone to construct a domain adaptation network architecture.
Results show that the proposed temporal convolution-based network architecture outperforms all benchmarks not only in accuracy but also in model size and convergence rate.
arXiv Detail & Related papers (2022-02-24T14:22:36Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.