Visiting Distant Neighbors in Graph Convolutional Networks
- URL: http://arxiv.org/abs/2301.10960v3
- Date: Wed, 22 May 2024 19:57:15 GMT
- Title: Visiting Distant Neighbors in Graph Convolutional Networks
- Authors: Alireza Hashemi, Hernan Makse,
- Abstract summary: We extend the graph convolutional network method for deep learning on graph data to higher order in terms of neighboring nodes.
We show that this higher order neighbor visiting pays off by outperforming the original model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the graph convolutional network method for deep learning on graph data to higher order in terms of neighboring nodes. In order to construct representations for a node in a graph, in addition to the features of the node and its immediate neighboring nodes, we also include more distant nodes in the calculations. In experimenting with a number of publicly available citation graph datasets, we show that this higher order neighbor visiting pays off by outperforming the original model especially when we have a limited number of available labeled data points for the training of the model.
Related papers
- Neighbor Overlay-Induced Graph Attention Network [5.792501481702088]
Graph neural networks (GNNs) have garnered significant attention due to their ability to represent graph data.
This study proposes a neighbor overlay-induced graph attention network (NO-GAT) with the following two-fold ideas.
Empirical studies on graph benchmark datasets indicate that the proposed NO-GAT consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-08-16T15:01:28Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Local Graph Embeddings Based on Neighbors Degree Frequency of Nodes [0.0]
We propose a strategy for graph machine learning and network analysis by defining certain local features and vector representations of nodes.
By extending the notion of the degree of a node via Breath-First Search, a general family of bf centrality functions is defined.
We show that centrality and closeness can be learned by applying deep learning to these local features.
arXiv Detail & Related papers (2022-07-30T07:07:30Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Learning Sparse Graphs with a Core-periphery Structure [14.112444998191698]
We propose a generative model for data associated with core-periphery structured networks.
We infer a sparse graph and nodal core scores that induce dense (sparse) connections in core parts of the network.
arXiv Detail & Related papers (2021-10-08T10:41:30Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering [37.68977275752782]
noisy edges and nodes in the graph may make the clustering results worse.
We propose a novel dual graph embedding network(DGEN) to improve the robustness of the graph clustering to the noisy nodes and edges.
Experiments on three benchmark graph datasets demonstrate the superiority compared with several state-of-the-art algorithms.
arXiv Detail & Related papers (2021-04-30T06:51:51Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCN is tailored for graph learning when the node features are categorical.
We train CatGCN in an end-to-end fashion and demonstrate it on semi-supervised node classification.
arXiv Detail & Related papers (2020-09-11T09:25:17Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
We introduce node2coords, a representation learning algorithm for graphs.
It learns simultaneously a low-dimensional space and coordinates for the nodes in that space.
Experimental results demonstrate that the representations learned with node2coords are interpretable.
arXiv Detail & Related papers (2020-07-31T13:14:25Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.