Relative-Interior Solution for the (Incomplete) Linear Assignment Problem with Applications to the Quadratic Assignment Problem
- URL: http://arxiv.org/abs/2301.11201v3
- Date: Fri, 16 Aug 2024 00:00:28 GMT
- Title: Relative-Interior Solution for the (Incomplete) Linear Assignment Problem with Applications to the Quadratic Assignment Problem
- Authors: Tomáš Dlask, Bogdan Savchynskyy,
- Abstract summary: We study the set of optimal solutions of the dual linear programming formulation of the linear assignment problem (LAP)
We propose a method for computing a solution from the relative interior of this set.
- Score: 2.149302375766032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the set of optimal solutions of the dual linear programming formulation of the linear assignment problem (LAP) to propose a method for computing a solution from the relative interior of this set. Assuming that an arbitrary dual-optimal solution and an optimal assignment are available (for which many efficient algorithms already exist), our method computes a relative-interior solution in linear time. Since the LAP occurs as a subproblem in the linear programming (LP) relaxation of the quadratic assignment problem (QAP), we employ our method as a new component in the family of dual-ascent algorithms that provide bounds on the optimal value of the QAP. To make our results applicable to the incomplete QAP, which is of interest in practical use-cases, we also provide a linear-time reduction from the incomplete LAP to the complete LAP along with a mapping that preserves optimality and membership in the relative interior. Our experiments on publicly available benchmarks indicate that our approach with relative-interior solution can frequently provide bounds near the optimum of the LP relaxation and its runtime is much lower when compared to a commercial LP solver.
Related papers
- Towards Efficient Pareto-optimal Utility-Fairness between Groups in
Repeated Rankings [7.6275971668447005]
We tackle the problem of computing a sequence of rankings with the guarantee of the Pareto-optimal balance between consumers and producers of items.
We introduce a novel approach to the above problem by using the Expohedron - a permutahedron whose points represent all exposures of items.
We further propose an efficient method by relaxing our optimization problem on the Expohedron's circumscribed $n$-sphere, which significantly improve the running time.
arXiv Detail & Related papers (2024-02-22T05:48:54Z) - Oracle Complexity Reduction for Model-free LQR: A Stochastic
Variance-Reduced Policy Gradient Approach [4.422315636150272]
We investigate the problem of learning an $epsilon$-approximate solution for the discrete-time Linear Quadratic Regulator (LQR) problem.
Our method combines both one-point and two-point estimations in a dual-loop variance-reduced algorithm.
arXiv Detail & Related papers (2023-09-19T15:03:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Maximum Optimality Margin: A Unified Approach for Contextual Linear
Programming and Inverse Linear Programming [10.06803520598035]
We develop a new approach to the problem called maximum optimality margin which the machine learning loss function by the optimality condition of the downstream optimization.
arXiv Detail & Related papers (2023-01-26T17:53:38Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Proximal Point Imitation Learning [48.50107891696562]
We develop new algorithms with rigorous efficiency guarantees for infinite horizon imitation learning.
We leverage classical tools from optimization, in particular, the proximal-point method (PPM) and dual smoothing.
We achieve convincing empirical performance for both linear and neural network function approximation.
arXiv Detail & Related papers (2022-09-22T12:40:21Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Learning to Reformulate for Linear Programming [11.628932152805724]
We propose a reinforcement learning-based reformulation method for linear programming (LP) to improve the performance of solving process.
We implement the proposed method over two public research LP datasets and one large-scale LP dataset collected from practical production planning scenario.
arXiv Detail & Related papers (2022-01-17T04:58:46Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - Integrated Cutting and Packing Heterogeneous Precast Beams Multiperiod
Production Planning Problem [0.0]
We introduce a novel variant of cutting production planning problems named Integrated Cutting and Packing Heterogeneous Beams Multiperiod Production Planning (ICP-HPBMPP)
We propose an integer linear programming model for the ICP-HPBMPP, as well as a lower bound for its optimal objective function value.
We also propose a genetic algorithm approach for the ICP-HPBMPP as an alternative solution method.
arXiv Detail & Related papers (2020-08-25T23:10:37Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.