論文の概要: SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification
- arxiv url: http://arxiv.org/abs/2301.11696v1
- Date: Fri, 27 Jan 2023 13:16:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 15:35:47.917157
- Title: SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification
- Title(参考訳): SLCNN:テキスト分類のための文レベル畳み込みニューラルネットワーク
- Authors: Ali Jarrahi, Ramin Mousa and Leila Safari
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は,テキスト分類のタスクにおいて顕著な成功を収めている。
CNNを用いたテキスト分類のための新しいベースラインモデルが研究されている。
結果から,提案したモデルの性能は,特に長いドキュメントにおいて向上していることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text classification is a fundamental task in natural language processing
(NLP). Several recent studies show the success of deep learning on text
processing. Convolutional neural network (CNN), as a popular deep learning
model, has shown remarkable success in the task of text classification. In this
paper, new baseline models have been studied for text classification using CNN.
In these models, documents are fed to the network as a three-dimensional tensor
representation to provide sentence-level analysis. Applying such a method
enables the models to take advantage of the positional information of the
sentences in the text. Besides, analysing adjacent sentences allows extracting
additional features. The proposed models have been compared with the
state-of-the-art models using several datasets. The results have shown that the
proposed models have better performance, particularly in the longer documents.
- Abstract(参考訳): テキスト分類は自然言語処理(NLP)の基本課題である。
いくつかの最近の研究は、テキスト処理におけるディープラーニングの成功を示している。
一般的なディープラーニングモデルである畳み込みニューラルネットワーク(cnn)は、テキスト分類のタスクにおいて顕著な成功を示している。
本稿では,CNNを用いたテキスト分類のための新しいベースラインモデルについて検討した。
これらのモデルでは、文書は3次元テンソル表現としてネットワークに送られ、文レベル解析を提供する。
このような手法を適用することで,テキスト中の文章の位置情報を活用することができる。
さらに、隣接する文を分析して追加の特徴を抽出することもできる。
提案したモデルは、いくつかのデータセットを用いて最先端のモデルと比較されている。
以上の結果から,提案モデルの性能が向上し,特にドキュメントが長くなることが示唆された。
関連論文リスト
- Text classification optimization algorithm based on graph neural network [0.36651088217486427]
本稿では,グラフニューラルネットワークを用いたテキスト分類最適化アルゴリズムを提案する。
適応的なグラフ構築戦略と効率的なグラフ畳み込み操作を導入することにより、テキスト分類の精度と効率を効果的に向上する。
論文 参考訳(メタデータ) (2024-08-09T23:25:37Z) - Revisiting N-Gram Models: Their Impact in Modern Neural Networks for Handwritten Text Recognition [4.059708117119894]
本研究は,言語モデル,特にn-gramモデルが,手書き認識の分野における最先端のディープラーニングアーキテクチャの性能に引き続き寄与するかどうかを論じる。
我々は、明示的なn-gram言語モデルを統合することなく、2つの著名なニューラルネットワークアーキテクチャ、PyLaiaとDANを評価した。
その結果,文字やサブワードの n-gram モデルの導入は,すべてのデータセット上での ATR モデルの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-30T07:37:48Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - A semantic hierarchical graph neural network for text classification [1.439766998338892]
本稿では,単語レベル,文レベル,文書レベルから対応する情報をそれぞれ抽出する階層型グラフニューラルネットワーク(HieGNN)を提案する。
いくつかのベンチマークデータセットの実験結果は、いくつかのベースライン手法と比較して、より良い、または類似した結果が得られる。
論文 参考訳(メタデータ) (2022-09-15T03:59:31Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - TextRGNN: Residual Graph Neural Networks for Text Classification [13.912147013558846]
TextRGNNは改良されたGNN構造であり、畳み込みネットワークの深さを深くする残差接続を導入している。
我々の構造はより広いノード受容場を得ることができ、ノード特徴の過度な平滑化を効果的に抑制できる。
コーパスレベルであれテキストレベルであれ、分類精度を大幅に向上させ、幅広いテキスト分類データセット上でSOTA性能を達成することができる。
論文 参考訳(メタデータ) (2021-12-30T13:48:58Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Self-interpretable Convolutional Neural Networks for Text Classification [5.55878488884108]
本論文では,ReLU-DNNに固有の局所線型モデルを用いて,テキスト分類問題に対する畳み込みニューラルネットワークの解釈手法を提案する。
提案手法は,より複雑なCNNモデルに対して,自己解釈可能で,同等の性能を有する擬似モデルを生成する。
論文 参考訳(メタデータ) (2021-05-18T15:19:59Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。