論文の概要: Single-Trajectory Distributionally Robust Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2301.11721v1
- Date: Fri, 27 Jan 2023 14:08:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-30 15:27:23.798752
- Title: Single-Trajectory Distributionally Robust Reinforcement Learning
- Title(参考訳): 単軌道分布ロバスト強化学習
- Authors: Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, Zhengyuan
Zhou
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、人工知能(Artificial General Intelligence, AGI)に繋がる重要な要素と考えられている。
しかしながら、RLはテスト環境と同じトレーニング環境を持つことでしばしば批判され、実世界でのRLの適用を妨げている。
この問題を解決するために、未知のテスト環境を含む可能性のある環境の組における最悪の性能を改善するために、分散ロバストRL(DRRL)を提案する。
- 参考スコア(独自算出の注目度): 13.013268095049236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a framework for sequential decision-making, Reinforcement Learning (RL)
has been regarded as an essential component leading to Artificial General
Intelligence (AGI). However, RL is often criticized for having the same
training environment as the test one, which also hinders its application in the
real world. To mitigate this problem, Distributionally Robust RL (DRRL) is
proposed to improve the worst performance in a set of environments that may
contain the unknown test environment. Due to the nonlinearity of the robustness
goal, most of the previous work resort to the model-based approach, learning
with either an empirical distribution learned from the data or a simulator that
can be sampled infinitely, which limits their applications in simple dynamics
environments. In contrast, we attempt to design a DRRL algorithm that can be
trained along a single trajectory, i.e., no repeated sampling from a state.
Based on the standard Q-learning, we propose distributionally robust Q-learning
with the single trajectory (DRQ) and its average-reward variant named
differential DRQ. We provide asymptotic convergence guarantees and experiments
for both settings, demonstrating their superiority in the perturbed
environments against the non-robust ones.
- Abstract(参考訳): 逐次的意思決定の枠組みとして、強化学習(rl)は、人工知能(agi)につながる必須要素とみなされてきた。
しかしながら、RLはテスト環境と同じトレーニング環境を持つことでしばしば批判され、実世界でのRLの適用を妨げている。
この問題を解決するために、未知のテスト環境を含む可能性のある環境の組における最悪の性能を改善するために、分散ロバストRL(DRRL)を提案する。
頑健性目標の非線形性のため、以前の研究のほとんどはモデルに基づくアプローチに頼っており、データから学習した経験的分布と無限にサンプリングできるシミュレータを学習することで、単純な動的環境における応用を制限している。
それとは対照的に、単一の軌道に沿ってトレーニング可能なdrrlアルゴリズム、すなわち、状態からの繰り返しサンプリングを行わない設計を試みる。
標準のq-learningに基づいて,single track (drq) を用いた分布的ロバストなq-learningを提案する。
両設定の漸近収束保証と実験を行い、非破壊環境に対する摂動環境におけるそれらの優位性を実証する。
関連論文リスト
- Model-Free Robust Reinforcement Learning with Sample Complexity Analysis [16.477827600825428]
本稿では,マルチレベルモンテカルロ法を用いたモデルフリーDR-RLアルゴリズムを提案する。
我々は,全変動,チ二乗発散,KL発散によって定義される不確実性集合のアルゴリズムを開発する。
注目すべきは、我々のアルゴリズムは、有限サンプルの複雑さを特徴とする初めてのモデルフリーDR-RLアプローチである。
論文 参考訳(メタデータ) (2024-06-24T19:35:26Z) - Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm [14.517103323409307]
Sim-to-realのギャップは、トレーニングとテスト環境の相違を表している。
この課題に対処するための有望なアプローチは、分布的に堅牢なRLである。
我々は対話型データ収集によるロバストなRLに取り組み、証明可能なサンプル複雑性を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T16:40:22Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
分散強化学習のための新しいゼロ階最適化アルゴリズムを提案する。
これにより、各エージェントはコンセンサスプロトコルを使わずに、コスト評価を独立してローカル勾配を推定できる。
論文 参考訳(メタデータ) (2021-07-26T18:11:07Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。