論文の概要: Single-Trajectory Distributionally Robust Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2301.11721v2
- Date: Sat, 21 Sep 2024 15:32:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 15:24:36.911844
- Title: Single-Trajectory Distributionally Robust Reinforcement Learning
- Title(参考訳): 単軌道分布ロバスト強化学習
- Authors: Zhipeng Liang, Xiaoteng Ma, Jose Blanchet, Jiheng Zhang, Zhengyuan Zhou,
- Abstract要約: 本研究では,分散ロバストRL (DRRL) を提案する。
既存のDRRLアルゴリズムはモデルベースか、1つのサンプル軌道から学習できないかのいずれかである。
単一軌道を用いた分散ロバストQ-ラーニング(DRQ)と呼ばれる,完全モデルフリーなDRRLアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 21.955807398493334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To mitigate the limitation that the classical reinforcement learning (RL) framework heavily relies on identical training and test environments, Distributionally Robust RL (DRRL) has been proposed to enhance performance across a range of environments, possibly including unknown test environments. As a price for robustness gain, DRRL involves optimizing over a set of distributions, which is inherently more challenging than optimizing over a fixed distribution in the non-robust case. Existing DRRL algorithms are either model-based or fail to learn from a single sample trajectory. In this paper, we design a first fully model-free DRRL algorithm, called distributionally robust Q-learning with single trajectory (DRQ). We delicately design a multi-timescale framework to fully utilize each incrementally arriving sample and directly learn the optimal distributionally robust policy without modelling the environment, thus the algorithm can be trained along a single trajectory in a model-free fashion. Despite the algorithm's complexity, we provide asymptotic convergence guarantees by generalizing classical stochastic approximation tools. Comprehensive experimental results demonstrate the superior robustness and sample complexity of our proposed algorithm, compared to non-robust methods and other robust RL algorithms.
- Abstract(参考訳): 古典的強化学習(RL)フレームワークが同一のトレーニング環境とテスト環境に大きく依存する限界を軽減するため、分散ロバストRL(DRRL)は、おそらく未知のテスト環境を含む様々な環境のパフォーマンスを高めるために提案されている。
ロバスト性ゲインの価格として、DRRLは一連の分布を最適化するが、これは本質的に非ロバストな場合の固定分布を最適化するよりも難しい。
既存のDRRLアルゴリズムはモデルベースか、1つのサンプル軌道から学習できないかのいずれかである。
本稿では,分散ロバストなQ-ラーニング(DRQ)と呼ばれる,完全モデルフリーなDRRLアルゴリズムを設計する。
本研究では,各サンプルを段階的に活用するマルチタイム・フレームワークを微妙に設計し,環境をモデル化せずに最適な分散ロバストなポリシーを直接学習する。
アルゴリズムの複雑さにもかかわらず、古典確率近似ツールを一般化することにより漸近収束を保証する。
総合的な実験結果から,提案アルゴリズムの頑健性やサンプルの複雑さは,非ロバストな手法や他のロバストなRLアルゴリズムと比較して優れていることが示された。
関連論文リスト
- Model-Free Robust Reinforcement Learning with Sample Complexity Analysis [16.477827600825428]
本稿では,マルチレベルモンテカルロ法を用いたモデルフリーDR-RLアルゴリズムを提案する。
我々は,全変動,チ二乗発散,KL発散によって定義される不確実性集合のアルゴリズムを開発する。
注目すべきは、我々のアルゴリズムは、有限サンプルの複雑さを特徴とする初めてのモデルフリーDR-RLアプローチである。
論文 参考訳(メタデータ) (2024-06-24T19:35:26Z) - Distributionally Robust Reinforcement Learning with Interactive Data Collection: Fundamental Hardness and Near-Optimal Algorithm [14.517103323409307]
Sim-to-realのギャップは、トレーニングとテスト環境の相違を表している。
この課題に対処するための有望なアプローチは、分布的に堅牢なRLである。
我々は対話型データ収集によるロバストなRLに取り組み、証明可能なサンプル複雑性を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-04T16:40:22Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous Single-looP alternatIve gRadient projEction という非同期分散アルゴリズムを提案する。
新しい不確実性集合、すなわち制約付きD-ノルムの不確実性集合は、以前の分布を利用し、強靭性の度合いを柔軟に制御するために開発される。
実世界のデータセットに関する実証研究は、提案手法が高速収束を達成できるだけでなく、悪意のある攻撃だけでなく、データに対する堅牢性も維持できることを示した。
論文 参考訳(メタデータ) (2022-10-14T07:39:13Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
分散強化学習のための新しいゼロ階最適化アルゴリズムを提案する。
これにより、各エージェントはコンセンサスプロトコルを使わずに、コスト評価を独立してローカル勾配を推定できる。
論文 参考訳(メタデータ) (2021-07-26T18:11:07Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。