Improving Behavioural Cloning with Positive Unlabeled Learning
- URL: http://arxiv.org/abs/2301.11734v2
- Date: Thu, 21 Sep 2023 11:03:01 GMT
- Title: Improving Behavioural Cloning with Positive Unlabeled Learning
- Authors: Qiang Wang, Robert McCarthy, David Cordova Bulens, Kevin McGuinness,
Noel E. O'Connor, Nico G\"urtler, Felix Widmaier, Francisco Roldan Sanchez,
Stephen J. Redmond
- Abstract summary: We propose a novel iterative learning algorithm for identifying expert trajectories in mixed-quality robotics datasets.
Applying behavioral cloning to the resulting filtered dataset outperforms several competitive offline reinforcement learning and imitation learning baselines.
- Score: 15.484227081812852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning control policies offline from pre-recorded datasets is a promising
avenue for solving challenging real-world problems. However, available datasets
are typically of mixed quality, with a limited number of the trajectories that
we would consider as positive examples; i.e., high-quality demonstrations.
Therefore, we propose a novel iterative learning algorithm for identifying
expert trajectories in unlabeled mixed-quality robotics datasets given a
minimal set of positive examples, surpassing existing algorithms in terms of
accuracy. We show that applying behavioral cloning to the resulting filtered
dataset outperforms several competitive offline reinforcement learning and
imitation learning baselines. We perform experiments on a range of simulated
locomotion tasks and on two challenging manipulation tasks on a real robotic
system; in these experiments, our method showcases state-of-the-art
performance. Our website:
\url{https://sites.google.com/view/offline-policy-learning-pubc}.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Benchmarking Offline Reinforcement Learning on Real-Robot Hardware [35.29390454207064]
Dexterous manipulation in particular remains an open problem in its general form.
We propose a benchmark including a large collection of data for offline learning from a dexterous manipulation platform on two tasks.
We evaluate prominent open-sourced offline reinforcement learning algorithms on the datasets and provide a reproducible experimental setup for offline reinforcement learning on real systems.
arXiv Detail & Related papers (2023-07-28T17:29:49Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Neural Active Learning on Heteroskedastic Distributions [29.01776999862397]
We demonstrate the catastrophic failure of active learning algorithms on heteroskedastic datasets.
We propose a new algorithm that incorporates a model difference scoring function for each data point to filter out the noisy examples and sample clean examples.
arXiv Detail & Related papers (2022-11-02T07:30:19Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z) - On the Robustness of Active Learning [0.7340017786387767]
Active Learning is concerned with how to identify the most useful samples for a Machine Learning algorithm to be trained with.
We find that it is often applied with not enough care and domain knowledge.
We propose the new "Sum of Squared Logits" method based on the Simpson diversity index and investigate the effect of using the confusion matrix for balancing in sample selection.
arXiv Detail & Related papers (2020-06-18T09:07:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.