Robust Offline Imitation Learning Through State-level Trajectory Stitching
- URL: http://arxiv.org/abs/2503.22524v1
- Date: Fri, 28 Mar 2025 15:28:36 GMT
- Title: Robust Offline Imitation Learning Through State-level Trajectory Stitching
- Authors: Shuze Wang, Yunpeng Mei, Hongjie Cao, Yetian Yuan, Gang Wang, Jian Sun, Jie Chen,
- Abstract summary: Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations.<n>Recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training.<n>We propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics.
- Score: 37.281554320048755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
Related papers
- Bootstrapping Reinforcement Learning with Imitation for Vision-Based Agile Flight [20.92646531472541]
We propose a novel approach that combines the performance of Reinforcement Learning (RL) and the sample efficiency of Imitation Learning (IL)
Our framework contains three phases teacher policy using RL with privileged state information distilling it into a student policy via IL, and adaptive fine-tuning via RL.
Tests show our approach can not only learn in scenarios where RL from scratch fails but also outperforms existing IL methods in both robustness and performance.
arXiv Detail & Related papers (2024-03-18T19:25:57Z) - CRISP: Curriculum Inducing Primitive Informed Subgoal Prediction for Hierarchical Reinforcement Learning [25.84621883831624]
We present CRISP, a novel HRL algorithm that generates a curriculum of achievable subgoals for evolving lower-level primitives.
CRISP uses the lower level primitive to periodically perform data relabeling on a handful of expert demonstrations.
We demonstrate that CRISP demonstrates impressive generalization in real world scenarios.
arXiv Detail & Related papers (2023-04-07T08:22:50Z) - Re-Evaluating LiDAR Scene Flow for Autonomous Driving [80.37947791534985]
Popular benchmarks for self-supervised LiDAR scene flow have unrealistic rates of dynamic motion, unrealistic correspondences, and unrealistic sampling patterns.
We evaluate a suite of top methods on a suite of real-world datasets.
We show that despite the emphasis placed on learning, most performance gains are caused by pre- and post-processing steps.
arXiv Detail & Related papers (2023-04-04T22:45:50Z) - Improving Behavioural Cloning with Positive Unlabeled Learning [15.484227081812852]
We propose a novel iterative learning algorithm for identifying expert trajectories in mixed-quality robotics datasets.
Applying behavioral cloning to the resulting filtered dataset outperforms several competitive offline reinforcement learning and imitation learning baselines.
arXiv Detail & Related papers (2023-01-27T14:17:45Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Discriminator-Guided Model-Based Offline Imitation Learning [11.856949845359853]
offline imitation learning (IL) is a powerful method to solve decision-making problems from expert demonstrations without reward labels.
We propose the Discriminator-guided Model-based offline Learning (DMIL) framework, which introduces a discriminator to simultaneously distinguish the dynamics correctness and suboptimality of model rollout data.
Experimental results show that DMIL and its extension achieve superior performance and robustness compared to state-of-the-art offline IL methods under small datasets.
arXiv Detail & Related papers (2022-07-01T07:28:18Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
We propose an approach to learn abstract motor skills from data using a hierarchical mixture latent variable model.
We demonstrate in manipulation domains that the method can effectively cluster offline data into distinct, executable behaviours.
arXiv Detail & Related papers (2021-12-09T17:37:14Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
Several object detection methods have been proposed in the literature, the vast majority based on Deep Convolutional Neural Networks (DCNNs)
These methods have important limitations for robotics: Learning solely on off-line data may introduce biases, and prevents adaptation to novel tasks.
In this work, we investigate how weakly-supervised learning can cope with these problems.
arXiv Detail & Related papers (2020-12-28T16:36:11Z) - Continuous Transition: Improving Sample Efficiency for Continuous
Control Problems via MixUp [119.69304125647785]
This paper introduces a concise yet powerful method to construct Continuous Transition.
Specifically, we propose to synthesize new transitions for training by linearly interpolating the consecutive transitions.
To keep the constructed transitions authentic, we also develop a discriminator to guide the construction process automatically.
arXiv Detail & Related papers (2020-11-30T01:20:23Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z) - On Learning Text Style Transfer with Direct Rewards [101.97136885111037]
Lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task.
We leverage semantic similarity metrics originally used for fine-tuning neural machine translation models.
Our model provides significant gains in both automatic and human evaluation over strong baselines.
arXiv Detail & Related papers (2020-10-24T04:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.