OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep
Neural Networks
- URL: http://arxiv.org/abs/2301.11912v1
- Date: Fri, 27 Jan 2023 18:54:00 GMT
- Title: OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep
Neural Networks
- Authors: Xingwu Guo, Ziwei Zhou, Yueling Zhang, Guy Katz, Min Zhang
- Abstract summary: Occlusion is a prevalent and easily realizable semantic perturbation to deep neural networks (DNNs)
It can fool a DNN into misclassifying an input image by occluding some segments, possibly resulting in severe errors.
Most existing robustness verification approaches for DNNs are focused on non-semantic perturbations.
- Score: 7.797299214812479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occlusion is a prevalent and easily realizable semantic perturbation to deep
neural networks (DNNs). It can fool a DNN into misclassifying an input image by
occluding some segments, possibly resulting in severe errors. Therefore, DNNs
planted in safety-critical systems should be verified to be robust against
occlusions prior to deployment. However, most existing robustness verification
approaches for DNNs are focused on non-semantic perturbations and are not
suited to the occlusion case. In this paper, we propose the first efficient,
SMT-based approach for formally verifying the occlusion robustness of DNNs. We
formulate the occlusion robustness verification problem and prove it is
NP-complete. Then, we devise a novel approach for encoding occlusions as a part
of neural networks and introduce two acceleration techniques so that the
extended neural networks can be efficiently verified using off-the-shelf,
SMT-based neural network verification tools. We implement our approach in a
prototype called OccRob and extensively evaluate its performance on benchmark
datasets with various occlusion variants. The experimental results demonstrate
our approach's effectiveness and efficiency in verifying DNNs' robustness
against various occlusions, and its ability to generate counterexamples when
these DNNs are not robust.
Related papers
- RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - A Mixed Integer Programming Approach for Verifying Properties of
Binarized Neural Networks [44.44006029119672]
We propose a mixed integer programming formulation for BNN verification.
We demonstrate our approach by verifying properties of BNNs trained on the MNIST dataset and an aircraft collision avoidance controller.
arXiv Detail & Related papers (2022-03-11T01:11:29Z) - Rethinking Feature Uncertainty in Stochastic Neural Networks for
Adversarial Robustness [12.330036598899218]
A randomness technique has been proposed recently, named Neural Networks (SNNs)
MFDV-SNN achieves a significant improvement over existing methods, which indicates that it is a simple but effective method to improve model robustness.
arXiv Detail & Related papers (2022-01-01T08:46:06Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.