MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics
- URL: http://arxiv.org/abs/2301.12095v1
- Date: Sat, 28 Jan 2023 05:30:51 GMT
- Title: MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics
- Authors: Lu Zhang, Huaiqian You, Tian Gao, Mo Yu, Chung-Hao Lee, Yue Yu
- Abstract summary: We propose a novel meta-learning approach for neural operators, which can be seen as transferring the knowledge of solution operators between governing (unknown) PDEs with varying parameter fields.
Our approach is a provably universal solution operator for multiple PDE solving tasks, with a key theoretical observation that underlying parameter fields can be captured in the first layer of neural operator models.
As applications, we demonstrate the efficacy of our proposed approach on PDE-based datasets and a real-world material modeling problem, illustrating that our method can handle complex and nonlinear physical response learning tasks while greatly improving the sampling efficiency in unseen tasks.
- Score: 39.83408993820245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Gradient-based meta-learning methods have primarily been applied to classical
machine learning tasks such as image classification. Recently, PDE-solving deep
learning methods, such as neural operators, are starting to make an important
impact on learning and predicting the response of a complex physical system
directly from observational data. Since the data acquisition in this context is
commonly challenging and costly, the call of utilization and transfer of
existing knowledge to new and unseen physical systems is even more acute.
Herein, we propose a novel meta-learning approach for neural operators, which
can be seen as transferring the knowledge of solution operators between
governing (unknown) PDEs with varying parameter fields. Our approach is a
provably universal solution operator for multiple PDE solving tasks, with a key
theoretical observation that underlying parameter fields can be captured in the
first layer of neural operator models, in contrast to typical final-layer
transfer in existing meta-learning methods. As applications, we demonstrate the
efficacy of our proposed approach on PDE-based datasets and a real-world
material modeling problem, illustrating that our method can handle complex and
nonlinear physical response learning tasks while greatly improving the sampling
efficiency in unseen tasks.
Related papers
- DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning [6.635683993472882]
We propose a novel fine-tuning method to achieve multi-operator learning.
Our approach combines distributed learning to integrate data from various operators in pre-training, while physics-informed methods enable zero-shot fine-tuning.
arXiv Detail & Related papers (2024-11-11T18:58:46Z) - Interpretable Meta-Learning of Physical Systems [4.343110120255532]
Recent meta-learning methods rely on black-box neural networks, resulting in high computational costs and limited interpretability.
We argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task.
We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems.
arXiv Detail & Related papers (2023-12-01T10:18:50Z) - Variational operator learning: A unified paradigm marrying training
neural operators and solving partial differential equations [9.148052787201797]
We propose a novel paradigm that provides a unified framework of training neural operators and solving PDEs with the variational form.
With a label-free training set and a 5-label-only shift set, VOL learns solution operators with its test errors decreasing in a power law with respect to the amount of unlabeled data.
arXiv Detail & Related papers (2023-04-09T13:20:19Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
We present a novel approach to extracting inductive biases from a set of related datasets.
We use functional Bayesian neural network inference, which views the prior as a process and performs inference in the function space.
Our approach can seamlessly acquire and represent complex prior knowledge by metalearning the score function of the data-generating process.
arXiv Detail & Related papers (2022-10-24T15:14:26Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - IQ-Learn: Inverse soft-Q Learning for Imitation [95.06031307730245]
imitation learning from a small amount of expert data can be challenging in high-dimensional environments with complex dynamics.
Behavioral cloning is a simple method that is widely used due to its simplicity of implementation and stable convergence.
We introduce a method for dynamics-aware IL which avoids adversarial training by learning a single Q-function.
arXiv Detail & Related papers (2021-06-23T03:43:10Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Physics-based polynomial neural networks for one-shot learning of
dynamical systems from one or a few samples [0.0]
The paper describes practical results on both a simple pendulum and one of the largest worldwide X-ray source.
It is demonstrated in practice that the proposed approach allows recovering complex physics from noisy, limited, and partial observations.
arXiv Detail & Related papers (2020-05-24T09:27:10Z) - Watch and learn -- a generalized approach for transferrable learning in
deep neural networks via physical principles [0.0]
We demonstrate an unsupervised learning approach that achieves fully transferrable learning for problems in statistical physics across different physical regimes.
By coupling a sequence model based on a recurrent neural network to an extensive deep neural network, we are able to learn the equilibrium probability distributions and inter-particle interaction models of classical statistical mechanical systems.
arXiv Detail & Related papers (2020-03-03T18:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.